Open intervertebral spacer

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S076000, C623S023630

Reexamination Certificate

active

06409765

ABSTRACT:

FIELD OF THE INVENTION
The present invention broadly concerns arthrodesis for stabilizing the spine. More specifically, the invention provides open-chambered intervertebral spacers, instruments for implanting the spacers and methods for making and using the spacers.
BACKGROUND OF THE INVENTION
Intervertebral discs, located between the endplates of adjacent vertebrae, stabilize the spine, distribute forces between vertebrae and cushion vertebral bodies. A normal intervertebral disc includes a semi-gelatinous component, the nucleus pulposus, which is surrounded and confined by an outer, fibrous ring called the annulus fibrosus. In a healthy, undamaged spine, the annulus fibrosus prevents the nucleus pulposus from protruding outside the disc space.
Spinal discs may be displaced or damaged due to trauma, disease or aging. Disruption of the annulus fibrosus allows the nucleus pulposus to protrude into the vertebral canal, a condition commonly referred to as a herniated or ruptured disc. The extruded nucleus pulposus may press on a spinal nerve, which may result in nerve damage, pain, numbness, muscle weakness and paralysis. Intervertebral discs may also deteriorate due to the normal aging process or disease. As a disc dehydrates and hardens, the disc space height will be reduced leading to instability of the spine, decreased mobility and pain.
Sometimes the only relief from the symptoms of these conditions is a discectomy, or surgical removal of a portion or all of an intervertebral disc followed by fusion of the adjacent vertebrae. The removal of the damaged or unhealthy disc will allow the disc space to collapse. Collapse of the disc space can cause instability of the spine, abnormal joint mechanics, premature development of arthritis or nerve damage, in addition to severe pain. Pain relief via discectomy and arthrodesis requires preservation of the disc space and eventual fusion of the affected motion segments.
Bone grafts are often used to fill the intervertebral space to prevent disc space collapse and promote fusion of the adjacent vertebrae across the disc space. In early techniques, bone material was simply disposed between the adjacent vertebrae, typically at the posterior aspect of the vertebra, and the spinal column was stabilized by way of a plate or rod spanning the affected vertebrae. Once fusion occurred, the hardware used to maintain the stability of the segment became superfluous and was a permanent foreign body. Moreover, the surgical procedures necessary to implant a rod or plate to stabilize the level during fusion were frequently lengthy and involved.
It was therefore determined that a more optimal solution to the stabilization of an excised disc space is to fuse the vertebrae between their respective end plates, preferably without the need for anterior or posterior plating. There have been an extensive number of attempts to develop an acceptable intradiscal implant that could be used to replace a damaged disc and maintain the stability of the disc interspace between the adjacent vertebrae, at least until complete arthrodesis is achieved. The implant must provide temporary support and allow bone ingrowth. Success of the discectomy and fusion procedure requires the development of a contiguous growth of bone to create a solid mass because the implant may not withstand the compressive loads on the spine for the life of the patient.
Several metal spacers have been developed to fill the void formed and to promote fusion. Sofamor Danek Group, Inc., (1800 Pyramid Place, Memphis, Tenn. 38132, (800) 933-2635) markets a number of hollow spinal cages. For example, U.S. Pat. No. 5,015,247 to Michelson and U.S. Ser. No. 08/411,017 to Zdeblick disclose a threaded spinal cage. The cages are hollow and can be filled with osteogenic material, such as autograft or allograft, prior to insertion into the intervertebral space. Apertures defined in the cage communicate with the hollow interior to provide a path for tissue growth between the vertebral endplates.
Although the metal fusion devices of Sofamor Danek and others are widely and successfully employed for reliable fusions, it is sometimes desirable to use an all-bone product. Bone provides many advantages for use in fusions. It can be incorporated after fusion occurs and therefore will not be a permanent implant. Bone allows excellent postoperative imaging because it does not cause scattering like metallic implants. Stress shielding is avoided because bone grafts have a similar modulus of elasticity as the surrounding bone. Although an all-bone spacer provides these and other benefits, the use of bone presents several challenges. Any spacer which will be placed within the intervertebral disc space must withstand the cyclic loads of the spine. Cortical bone products may have sufficient compressive strength for such use, however, cortical bone will not promote rapid fusion. Cancellous bone is more conducive to fusion but is not biomechanically sound as an intervertebral spacer.
Several bone dowel products such as the Cloward Dowel have been developed over the years. Bone dowels in the shape of a generally circular pin can be obtained by drilling an allogeneic or autogeneic plug from bone. As shown in
FIGS. 1 and 2
, the dowels
100
,
200
have one or two cortical surfaces
110
and an open, latticed body of brittle cancellous bone
120
,
220
backing the cortical surface
210
or between the two cortical surfaces
110
. The dowels
100
,
200
also include a drilled and/or tapped instrument attachment hole
115
,
215
. Dowels and other bone products are available from the University of Florida Tissue Bank, Inc., (1 Innovation Drive, Alachua, Fla. 32615, 904-462-3097 or 1-800-OAGRAFT; Product numbers 280012, 280014, and 280015).
While the bone dowels of the prior art are valuable bone grafting materials, these dowels have relatively poor biomechanical properties, in particular a low compressive strength. Accordingly, these dowels may not be suitable as an intervertebral spacer without internal fixation due to the risk of collapsing prior to fusion under the intense cyclic loads of the spine. A need remains for dowels having the advantages of allograft but with even greater biomechanical strength.
In response to this need, the University of Florida Tissue Bank, Inc., has developed a proprietary bone dowel machined from the diaphysis of long bones. Referring now to
FIG. 3
, the dowel
300
includes a tool engagement end
301
and an opposite insertion end
302
. Between the two ends
301
and
302
, the dowel
300
includes a chamber
330
formed from the naturally occurring medullary canal of the long bone and an opening
331
in communication with the chamber
330
. The chamber
330
can be packed with an osteogenic material to promote fusion while the cortical body
305
of the dowel
300
provides support. The dowels are also advantageous in that they provide desirable biomechanics and can be machined for various surface features such as threads or annular ribbing. In some embodiments, the outer cortical surface
310
of the tool engagement end
301
is machined with an instrument attachment feature and an alignment score mark. As shown in
FIG. 3
, the insertion end
302
may include a chamfered portion
340
.
While these diaphysial cortical dowels are a major advance in this field, a need has remained for bone dowels and other intervertebral spacers with greater versatility.
SUMMARY OF THE INVENTION
This invention provides spacers having an open chamber, tools for implanting the spacers and methods for making and using the spacers. The spacers include a body having a wall which defines a chamber and an opening in communication with the chamber. In one aspect, a channel is defined in the wall in communication with the chamber and the outer surface of the spacer. In another embodiment the wall includes a pair of arms facing one another and forming a mouth to the chamber. In a preferred embodiment, one of the arms is truncated relative to the other. In some aspects, the body is composed of bone. In one aspect the body is

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Open intervertebral spacer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Open intervertebral spacer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Open intervertebral spacer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2973794

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.