Electrical audio signal processing systems and devices – Hearing aids – electrical – Wideband gain control
Reexamination Certificate
1997-01-10
2001-08-14
Le, Huyen (Department: 2643)
Electrical audio signal processing systems and devices
Hearing aids, electrical
Wideband gain control
C381S328000, C381S330000
Reexamination Certificate
active
06275596
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an open ear canal hearing aid system. More particularly, the present invention relates to an open ear canal hearing aid system including a sound processor for amplifying sounds included within a predetermined amplitude and frequency range.
2. State of the Art
Present day hearing aids have been developed to correct the hearing of users having various degrees of hearing impairments. It is well known that the hearing loss of people is generally not uniform over the entire audio frequency range. For instance, hearing loss for sounds at high audio frequencies (above approximately 1000 Hz) will be more pronounced for some people with certain common hearing impairments while hearing loss for sounds at lower frequencies (below approximately 1000 Hz) will be more pronounced for people having different hearing impairments.
The largest population of people having hearing impairments includes those having mild hearing losses with normal hearing in the low frequency ranges and hearing losses in the higher frequency ranges. In particular, the most problematic sounds for people having such mild hearing losses are high frequency sounds at low amplitudes (soft sounds).
The traditional approach for correcting hearing impairments has been to employ electronic “In-The-Ear” (ITE) hearing aid devices inserted into the ear and “Behind-The-Ear” (BTE) hearing aid devices attached behind the ear. Then, through various signal processing techniques, the sounds to be delivered to the ear are rebuilt and supplemented to facilitate and optimize the hearing of the user throughout the frequency range. Such devices tend to block the ear canal so that little or no sounds reach the ear in a natural, unaided manner.
Conventional hearing aids generally provide adequate hearing throughout the entire frequency range for most hearing impairments. However, these types of devices are not optimal for those people having mild hearing losses for a number of reasons. Conventional hearing aids can unnecessarily amplify loud low frequency and high frequency sounds so that these sounds become uncomfortable and annoying to the mild hearing loss users. In many hearing aids, such loud sounds are also distorted by the sound processing circuitry, significantly reducing the intelligibility of speech or the quality of other sounds. In addition, these types of hearing aids add phase shifts to low frequency sounds, resulting in a degradation of the user's ability to localize sound sources. In effect, traditional hearing aids degrade certain sounds that the mild hearing loss user could otherwise hear adequately without any aid. Additionally, these traditional hearing aids are overly complicated and burdensome to users having mild hearing losses.
Efforts have been made to provide different gains for sounds of different frequencies, depending on the hearing needs of the user. For example, U.S. Pat. No. 5,276,739 to Krokstad discloses a device which amplifies sounds with different gains according to the frequencies of the sounds. While this device provides an improved gain response, it processes sounds across the entire frequency range, including low frequency sounds. Thus, this device suffers from the same problems noted above in accommodating the mild hearing loss user.
Other attempts to provide different gains for sounds of different frequencies employ multiband compression in which sounds of different frequency bands and different amplitudes are compressed by different amounts. For example, U.S. Pat. Nos. 5,278,912 and 5,488,668 to Waldhauer disclose multiband compression for hearing aids. Such systems apply compression to the entire frequency range, including low frequency signals. In the case of a user with mild hearing loss, compression for low frequency sounds is not needed. Applying compression to low frequency sounds thus results in a waste of money and space for the circuitry required to perform such compression.
Conventional hearing aid systems cause an additional problem known as the occlusion effect. The occlusion effect is the increased transmission of sound by bone conduction when the ear canal is blocked and air conduction is impeded, resulting in sounds which are both unnatural and uncomfortable for the user. In particular, the user's voice sounds different than normal when the ear is blocked.
Vents have been introduced in hearing aid systems to reduce the occlusion effect as well as to reduce low frequency gain and to shape frequency responses. Such vents only reduce the occlusion effect partially. The occlusion effect therefore remains another drawback to using these traditional hearing aid systems.
In an effort to alleviate some of the aforementioned problems, some BTE aids have been designed with a tube fitting. These types of aids include a tube that extends into the ear canal and is held in place by an ear mold that leaves the ear canal generally unobstructed. The relatively open ear canal overcomes some of the problems mentioned above. However, these types of aids suffer from a number of other significant problems.
For example, like other BTE hearing aids, the “tube fitting” aids typically employ a rigid ear hook that connects to a soft tube which in turn connects to a rigid ear mold. The soft, shapeless tubing is simple to use, but has the disadvantage that the tube does not hold the device in place. The result is that this type of BTE hearing aid requires a large ear hook and a large, hard, close-fitting ear mold to maintain the position of the tube within the ear canal. The large size of these components results in a cosmetically unattractive device. Also, the ear mold has to be custom-manufactured, which adds to the cost of the device and the time needed to fit the hearing aid.
Another problem with the “tube fitting” hearing aid is that this type of hearing aid does not have a compression system that meets the needs of the user in an optimum way. As mentioned above, only multiband compression designs respond adequately to combinations of high and low frequency inputs. However, such systems are complex and expensive for use with mild loss patients. Thus, the “tube fitting” hearing aids suffer from the same problems noted above with regard to other types of hearing aids.
U.S. Pat. No. 4,904,078 to Gorike discloses another type of BTE device in which the hearing aid is formed in a pair of eyeglasses. The eyeglass aid leaves the ear canal open but is cosmetically unattractive. Also, the user is required to wear a custom made pair of eyeglasses, which adds to the cost of the device.
None of the above-described systems are directed to a hearing aid system which specifically solves only the hearing needs of people having mild hearing loss. Because people with mild hearing loss have normal hearing for many sounds, it is desirable to provide a hearing aid system which allows these sounds to pass through the ear canal unaided and to be heard in a natural manner and to only compensate and aid the sounds that the user has difficulty hearing. It is further desirable that such a hearing aid be cosmetically attractive and comfortable to wear.
SUMMARY OF THE INVENTION
According to the present invention, an open ear canal hearing aid system comprises an ear canal tube sized for positioning in an ear canal of a user so that the ear canal is at least partially open for directly receiving ambient sounds. The open ear canal hearing aid system further comprises a sound processor for amplifying received ambient sounds included within a predetermined frequency range to produce processed sounds and for supplying said processed sounds to said ear canal tube. Providing gain for a desired range of frequencies and amplitudes allows the benefit of simpler and lower power hearing aid components, resulting in a smaller and lower cost device. Thereby, the present open ear canal hearing aid system provides a simple, comfortable, and cosmetically attractive hearing aid system that is specifically tailored for users having certain hearing deficienci
Fretz Robert J.
Stypulkowski Paul H.
Woods Richard T.
Burns Doane , Swecker, Mathis LLP
GN ReSound Corporation
Le Huyen
LandOfFree
Open ear canal hearing aid system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Open ear canal hearing aid system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Open ear canal hearing aid system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2545735