One touch actuated valve

Fluid sprinkling – spraying – and diffusing – Including valve means in flow line – Line fluid operated

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C239S574000, C239S525000, C251S038000, C251S045000

Reexamination Certificate

active

06691937

ABSTRACT:

FIELD OF INVENTION
This invention relates to a valve having one touch control. More specifically, this invention relates to a valve control which requires a light one touch to fully open and close the valve.
BACKGROUND OF INVENTION
Irrigation over small areas has involved the use of a hose having one end connected to a sillcock and moving the opposite open end of the hose to direct the water to desired areas. Using the sillcock, water flow may be turned on or cut off to the opposite open end of the hose. Additionally, the rate of water flow may be regulated by turning the sillcock. However, this method of flow control is impractical as often the hose is extended a distance from the sillcock making it inconvenient to return to the sillcock to turn water flow on or off or adjust the flow rate. Additionally, the open end of the hose only issues water in a continuous stream. Thus, various irrigation devices with flow control were developed to be connected to the open end of a hose. With such irrigation devices, the sillcock could be turned on to provide full water flow while the user had local control of the flow using the irrigation device.
Typically, one such irrigation device is a pistol-grip hose nozzle. A typical pistol-grip nozzle includes a tubular body having a handle portion connectable at one end to the garden hose. The body has a fixed barrel portion extending from the opposite end of the hose connector at an angle similar to the angle between a pistol's handle and barrel. The water stream issues from the nozzle at the forward end of the barrel. Both the activation and cutoff of the flow and the flow rate of the water stream are determined by a valve which has an aperture which may be aligned to regulate water flow. The valve may be controlled by a valve stem extending through the barrel portion and outwardly through the rear end thereof. The movement of the valve stem is controlled by a pivoted trigger lever which enables the user to grip the handle portion and put their palm on the trigger to adjust the water stream issuing from the nozzle. A spring maintains the trigger lever in an outward position keeping the valve closed. By squeezing the trigger lever, a user will cause water to flow out of the barrel portion.
However, such trigger hose nozzles require continuous pressure on the lever to maintain fluid flow. This results in fatigue eventually for long term use. Also such pressure is difficult to maintain and does not permit full attention to the control of the fluid flow rate.
Certain pistol-grip type hose nozzles allow a user to separately control the pattern of the water stream and flow cutoff. In these nozzles, a bail is utilized to lock the trigger into a fully open position. A flow control knob is located on the nozzle body separately from the trigger. Rotating the knob varies the fluid flow rate in the valve by rotating a flow cylinder. The flow cylinder has an outlet to the barrel and a port which is accessed by the flow in the handle portion by opening the valve. Once the knob is turned, the flow cylinder rotates and exposes some or all of the port to water flow thus varying the flow rate. The bail affords ease of use because the user does not have to keep constant pressure on the trigger. Additionally, a user may operate the pistol nozzle with only one hand since only one hand is required both to hold the nozzle and rotate the knob to actuate the water stream.
However, these nozzles still depend on initial squeezing pressure to lock the trigger into place. Additionally, the user does not have instantaneous control over the fluid flow.
Thus, there exists a need for a one touch valve which activates or stops water flow from a single actuation. There also exists a need for a valve with one touch flow/cutoff in combination with a flow rate control. There is also a need for an integrated control with flow/cutoff as well as flow rate control. There is additionally a need for a flow control valve which uses a pilot-type valve to actuate the main valve. There is also a need for a one touch control which provides instantaneous shutoff or turn on of fluid flow.
SUMMARY OF THE INVENTION
These needs may be addressed by the present invention which may be embodied in a one touch valve for activating fluid flow between an inlet conduit and an outlet conduit. The valve has a flow cylinder defining an inflow chamber in fluid communication with the inlet conduit. The flow cylinder also has an outflow chamber in fluid communication with the outlet conduit. The flow cylinder includes an end plate and an intermediate plate having a center collar with an aperture. A flexible diaphragm has a sealing surface in contact with the collar to create a seal, an opposite surface, and an aperture extending therethrough. The diaphragm also has an edge coupled to the intermediate plate and a small diameter hole providing fluid communication between the inflow chamber and an intermediate chamber defined by the intermediate plate and the flow cylinder. A plunger having a contact surface and an opposite diaphragm contact surface is provided. The diaphragm contact surface creates a seal with the opposite surface of the diaphragm. A shaft having one end connected to the plunger extends through the aperture of the diaphragm. A spring is located between the end plate of the flow cylinder and the contact surface of the plunger. Pushing the shaft causes the plunger to separate from the diaphragm creating fluid pressure on the diaphragm contact surface to push the plunger toward the end plate. The spring is compressed which causes the diaphragm to separate from the collar causing fluid to flow from the inflow chamber through the aperture to the outflow chamber. Releasing the shaft causes the spring to decompress, forcing the plunger and diaphragm away from the end plate re-establishing the seal between the sealing surface with the collar preventing fluid flow from the intermediate chamber to the outflow chamber.
The invention may also be embodied in a flow control valve unit allowing a user to control the fluid flow rate and cutoff or activate fluid flow between an inlet conduit and an outlet conduit. The control valve unit has an exterior cylinder with a side wall having an outer inlet aperture in fluid communication with the inlet conduit. A flow cylinder is rotatably mounted within the side wall of the exterior cylinder. The flow cylinder defines an inflow chamber in fluid communication with the inlet conduit and an outflow chamber in fluid communication with the outlet conduit. The flow cylinder includes an inner inlet aperture which allows fluid communication to an inflow chamber, an end plate and an intermediate plate having a center collar with an aperture. Rotating the flow cylinder changes the area of the inner inlet aperture in fluid communication to the outer inlet aperture in order to control flow rate. A flexible diaphragm has a sealing surface in contact with the collar to create a seal, an opposite surface, and an aperture extending therethrough. The diaphragm also has an edge coupled to the intermediate plate and a small diameter hole providing fluid contact between the inflow chamber and an intermediate chamber defined by the intermediate plate and the flow cylinder. A plunger has a contact surface and an opposite diaphragm contact surface. The diaphragm contact surface creates a seal with the opposite surface of the diaphragm. A shaft is provided having one end connected to the plunger and extending through the aperture of the diaphragm. A spring is located between the end plate of the flow cylinder and the contact surface of the plunger. Pushing the shaft causes the plunger to separate from the diaphragm creating fluid pressure on the diaphragm contact surface to push the plunger toward the end plate. The spring is compressed and the diaphragm separates from the collar causing fluid to flow from the inflow chamber through the aperture to the outflow chamber. Releasing the shaft causes the spring to decompress, forcing the plunger and diaphragm away from the end plate, re-es

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

One touch actuated valve does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with One touch actuated valve, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and One touch actuated valve will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3277741

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.