One step lubricious coating

Stock material or miscellaneous articles – Composite – Of polyamidoester

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06299980

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a lubricious coating which may be applied to a substrate in one step, comprising a polyisocyanate; a hydroxyl donor and/or amine donor; a polymer selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid; and an isocyanatosilane adduct having terminal isocyanate groups and at least one hydrolyzable alkoxy group bonded to silicon. The invention also relates to a method for producing the lubricious coating.
BACKGROUND OF THE INVENTION
It has long been known that hydrophilic coatings with low friction (coefficient of friction of 0.3 or less) are useful for a variety of medical devices such as catheters, catheter introducers and the like. When low friction surfaces are used, the devices, upon introduction into the body, slide easily within arteries, veins and other body orifices and passageways. There have been a wide variety of methods used to provide the surfaces desired. In some cases the material of the catheter or medical device is formed of a material having good anti-friction properties such as poly(tetrafluoroethylene) or other plastics which tend to avoid abrasion with the body. However, in many cases the selection of materials does not provide the anti-slip properties desired in conjunction with other desirable properties for the particular medical device.
Prior art hydrophilic coatings typically rely on a two step, two coating process, usually involving a primer coat of isocyanate or isocyanate/polymer blend which is dried, followed by a second coat containing at least one hydrophilic polymer such as polyvinyl pyrrolidone or polyethylene oxide. The two coatings, one superimposed on the other, are then baked to effect a cure. This forms an interpolymer complex or a network including the hydrophilic polymer. Several disadvantages to this process exist.
First, the exact ratio of primer material to the hydrophilic polymer is difficult to control, as it depends on whatever amounts of primer and hydrophilic polymer happen to be deposited by the wet film during the respective coating steps. Second, the primer may begin to redissolve in the second coating solution, causing some loss of primer and further resulting in difficulty in controlling the primer/hydrophilic polymer ratio. Third, the hydrophilic polymer is not covalently bonded to the substrate and may bond to other materials in the area leading the coating to lose its desired properties. Fourth, additional facilities and time are needed for coating with a two step process, as compared to a one step process.
Prior patents have suggested applying solutions of polyvinylpyrrolidone with isocyanate and/or polyurethane in multi-step operations. These coatings often lack good durability. For example, U.S. Pat. No. 4,585,666 issued to Lambert discloses medical devices having hydrophilic coatings formed from an isocyanate layer overcoated with a polyvinylpyrrolidone layer. However, the multistep procedure makes it difficult to tailor the properties and values of the final coatings.
U.S. Pat. No. 4,625,012, Rizk et al., describes a one step method for preparing moisture curable polyurethane polymers having pendant alkoxysilane groups and isocyanate terminals on a substrate. The method includes reacting an isocyanatosilane adduct and an isocyanate different from the isocyanatosilane with a polyol. The isocyanatosilane adduct and the isocyanate have at least two isocyanato groups each. Furthermore, the isocyanatosilane is produced by reacting an isocyanate having at least three isocyanato groups with an organofunctional alkoxysilane. The coating formed, however, is not lubricious.
In U.S. Pat. No. 4,373,009, Winn, a coating process for preparing a lubricious coating is disclosed. A coupling agent is first applied to the substrate. A coating is then applied on top of the coupling agent. The coupling agent bonds the coating to the substrate. Although the coupling agent and coating may be applied to the substrate from the same solution, the preferred method is to apply them separately.
U.S. Pat. No. 5,645,931, Fan et al., describes a one step coating process for preparing a thromboresistant lubricious coating. The coating is comprised of a substantially homogeneous composite of polyethylene oxide and polyisocyanate in an inert solvent. However, the one step coating process is only suitable for polymeric substrates.
U.S. Pat. No. 5,662,960, Hostettler et al., describes a process for producing slippery, tenaciously adhering hydrogel coatings containing a polyurethane-polyurea (PU/PUR) hydrogel commingled with a poly(N-vinyl pyrolidone) hydrogel. The coating may be applied on plastic, rubber, or metallic substrates. However, the process is performed in several steps. Initially, plastic substrates are activated by oxidative chemical treatments and plasma treatments with oxygen or nitrogen containing plasma gases. Metallic substrates are treated with aminosilane primers. Then, a base coat of PU/PUR hydrogel is applied to the substrate followed by the application of a coat of a second hydrogel.
The present invention provides a one step coating which may be applied in a single step, alleviates the need for a primer or coupling agent, and can be applied on various substrates, including, but not limited to, plastics and metals.
SUMMARY OF THE INVENTION
The present invention provides a coating comprising a polyurethane network formed from the reaction, on a substrate to be coated, of a mixture comprising a polyisocyanate; a hydroxyl donor and/or amine donor; a polymer selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid; and an isocyanatosilane adduct having terminal isocyanate groups and at least one hydrolyzable alkoxy group bonded to silicon in a solvent.
According to another embodiment of the present invention, an article is provided comprising a substrate on which a coating is formed comprising a polyurethane network formed from the reaction, on a substrate to be coated, of a mixture comprising a polyisocyanate; a hydroxyl donor and/or amine donor; a polymer selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid; and an isocyanatosilane adduct having terminal isocyanate groups and at least one hydrolyzable alkoxy group bonded to silicon, in a solvent.
According to yet another embodiment of the invention, a method of preparing a coating on a substrate to be coated comprises forming a mixture of a polyisocyanate, a hydroxyl donor and/or amine donor; a polymer selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid; and an isocyanatosilane adduct having terminal isocyanate groups and at least one hydrolyzable alkoxy group bonded to silicon, in a solvent; applying the mixture to the substrate; and curing the mixture on the substrate to form the coating.
These and other features and objects of the invention are more fully appreciated from the following detailed description of a preferred embodiment of the invention.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
According to the present invention, a lubricious coating is formed from the reaction, on a substrate to be coated, of a mixture comprising a polyisocyanate; a hydroxyl donor and/or an amine donor; a polymer selected from the group consisting of polyethylene oxide, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, and polyacrylic acid; and an isocyanatosilane adduct having terminal isocyanate groups and at least one hydrolyzable alkoxy group bonded to silicon; in a solvent. The resulting coating is highly lubricious, thromboresistant, anti-microbial, and drug eluting.
It is believed that the isocyanate functional groups of the polyisocyanate and isocyanatosilane react with the hydroxyl donor to create a polyurethane network and react with the amine donor to form a polyurea network. Furt

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

One step lubricious coating does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with One step lubricious coating, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and One step lubricious coating will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2578683

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.