One piece folded and glued container

Envelopes – wrappers – and paperboard boxes – Paperboard box – A sidewall includes a horizontally or downwardly extending...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C229S178000, C229S186000, C229S918000, C229S919000

Reexamination Certificate

active

06527167

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to paperboard, corrugated or similar cartons and containers made in an automated manner by folding panels of an integral flat blank and gluing the panels at key locations. The container is supplied in a collapsed or knocked-down flat configuration. Before loading with product the container is erected manually into a rectilinear box by simple motions. Erection of the folded and glued panels produces certain useful structural attributes such as improved stacking strength, stack alignment, locking of the box in the erected state, etc.
2. Related Art
Corrugated and paperboard containers are made from one or more pieces of flat stock that are cut in required shapes and are assembled to form the walls of a full or partial enclosure. Variations are possible in which several separately-integral parts are formed and then are assembled using glue, tape, staples or the like. For example, the container body and lid may be separate parts, or various types of inserts may be used for reinforcement or other purposes such as subdividing the volume of the container into discrete areas.
Containers are supplied in a collapsed state because storage or handling of empty containers is wasteful of space. The containers are partly formed, with their parts cut out and certain seams and folds provided. The packer erects the containers prior to loading, and finishes any required assembly steps in the process. The loaded containers are finally closed, as suitable for storage or shipment. For example, a container may be cut out from integral flat stock, folded and scored at spaced parallel lines corresponding to the corners of the container (with at least one seam), and supplied with the opposite side and end walls collapsed flat against one another. Top and bottom flaps are likewise integrally attached to the side and end walls at folds or score lines. The packer erects the container from a flat parallelogram into its rectilinear shape, folding the bottom and top flaps inwardly before and after loading, respectively, and finally closing the container at seams that are taped, glued or otherwise attached.
It is efficient if most or preferably all of the container parts are integral parts and extensions of a single piece of flat material. Separate discrete parts such as separate lids, partitions and reinforcing inserts involve manual assembly steps. Manual assembly steps are costly and consume worker time in several ways. In addition, assembly steps can be physically taxing and may lead to repetitive motion injuries. It is preferable if containers are substantially fully formed when supplied, and require the least possible manual action to deploy, load, close and store or pack the containers for shipment. However it is also important for the containers to be structurally sound.
Self-erecting paperboard and corrugated containers are known with their respective wall panels and flaps connected in such a way that one or more of the structural parts of the container is pulled into an erected position as the other parts are erected. Commonly owned pending patent application Ser. No. 09/129,375, filed Aug. 5, 1998, entitled Stackable Container, discloses an integral blank container having folded and glued bellows or gusset corners that couple a bottom panel with side and end wall panels. When the container is erected from the knocked-down-flat state, the assembler need only pull on (or otherwise relatively displace) one of the panels, which pulls all of the panels into a rectilinear shape. In another commonly owned pending patent application Ser. No. 09/253,822, filed Feb. 19, 1999, an integral blank container including end walls with spaced inner and outer end wall panels and an upper/edge is disclosed. Advantageously, the end wall panels and ledge encompass hollow erectable support columns that are associated with upwardly protruding stacking tabs. The internal hollow columns, which are supported by folded and glued panels and are opened under the ledge when the container is in an erected state, vertically reinforce the end walls of the container.
U.S. Pat. No. 4,899,929—Grollman, discloses self-erecting bottom flaps connected to container side walls by folded-back glued gusset panels. The gusset panels are arranged to pull the bottom flaps downwardly into a position perpendicular to the side walls when the side and end walls are unfolded from one another during manual expansion of the container from a flattened parallelogram into a rectilinear box.
The foregoing applications also disclose locking tab structures in which a plural thickness tab protrudes upwardly from the structure of the container end wall to engage in an opening in a similar container stacked thereon. One objective of cartons or containers as described is to support the products that have been loaded into the containers, as well as to bear the load of additional containers that may be stacked on a given container. For this purpose, the panels that are folded and glued can include wall panels having multiple thicknesses of glued-together material and/or partition walls that extend between opposite side walls or end walls. These structural reinforcing features add to the vertical stacking strength or load bearing capacity of the container, namely the maximum vertical weight that can be borne without buckling or displacing the container walls. A container should have good vertical stacking strength, but if possible such stacking strength should be achieved without unnecessarily adding weight to the container and without complicating assembly or erection steps. It is also advantageous if stacking strength can be achieved by means of reinforcements that occupy very little of the space that would otherwise be available for carrying product. Thus, considerations of container strength are sometimes at odds with considerations of weight and volume or ease of assembly.
Containers are routinely stacked vertically to make efficient use of space, and may be reinforced against vertical crushing by employing multiple thickness of material for wall panels or by forming columns, for example as in U.S. Pat. No. 5,330,094—Merz. Known structures that are reinforced in this manner are constructed using added-in insert pieces or using a container structure that requires various manual operations in order to install or erect the reinforcing structure.
Two or more containers are often stacked in vertical registry to be carried manually, to be stacked in a storage area or for shipping on a pallet or the like, in any number of adjacent columns or in a staggered overlapping arrangement resembling masonry. Stacking maximizes the density of storage, and often enables a group of containers to be handled conveniently as a structural unit, e.g., when using a fork-lift truck or a two wheel hand dolly.
Containers in stacks can be subjected to various vertical and lateral forces. Vertical compression force is applied by the weight of upper containers in a stack and the product they contain. This vertical force is borne by the vertically extending structural elements of the underlying cartons. The structural elements that bear vertical forces on a carton or similar container normally occupy only a very limited span of lateral width and/or depth. For example, the vertical forces on many cartons are borne exclusively by their vertical side and end walls. If the stacked cartons remain in registry, then the weight of each upper container is coupled, by the side and end walls of the upper container, to the corresponding side and end walls of an underlying container aligned with the upper container. The side and/or end walls of the upper and lower containers are disposed directly over and under one another over a lateral width and depth of each wall (normally one thickness of material).
If the stacked containers become displaced from exact registry, vertical support may be lacking. It is possible to enlarge the lateral width and depth of the side or end walls of a container such that a ledge is defined on which

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

One piece folded and glued container does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with One piece folded and glued container, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and One piece folded and glued container will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3067395

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.