Data processing: measuring – calibrating – or testing – Measurement system – Performance or efficiency evaluation
Reexamination Certificate
2001-03-08
2004-06-15
Barlow, John (Department: 2863)
Data processing: measuring, calibrating, or testing
Measurement system
Performance or efficiency evaluation
C382S100000, C356S328000
Reexamination Certificate
active
06751576
ABSTRACT:
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
FIELD OF THE INVENTION
The present invention is generally directed to a process for analyzing agricultural products at one or more locations. More particularly, the invention relates to a process for analyzing the traits of various agricultural products including a plant seed, the resulting crop, food items made from the crop, and the like, at various locations where the agricultural crops can be evaluated. The invention also relates to the system for acquiring data at remote site locations, transmitting the data to the central processor for data analysis, and receiving and displaying processed information at those locations.
BACKGROUND OF THE INVENTION
There are numerous instances where one or more properties of an agricultural product are preferably analyzed at one or more locations where the product is found. Agricultural products may be analyzed for the presence and concentration of certain components during the crop growing stage, at harvesting, during transportation or after the product has been stored, as at a grain silo.
It is known to analyze certain components of a particular agricultural product at the location where the material is either grown, harvested, transported, or stored. It may be convenient or necessary for on-site analyzers to be able to be easily transported from one location to another. A portable sensor unit or spectrometer is one that is sufficiently compact and robust to permit it to be transported to alternate testing locations as needed. These units are able to be removed from service and returned to service quickly for transportation to and use at a desired site for analysis. The analytical instruments for such analysis must be rugged and capable of making repetitive analyses with little or no variation over the course of use of the unit.
Because the analysis of a particular agricultural product may need to be determined at locations over a wide geographic area within a narrow time frame, it is impractical to conduct the analyses using only one instrument. Generally it is necessary to test these products at multiple sites with multiple analyzers. The physical condition of the material samples being analyzed, for example the sample temperature, may be different at the various sites, so accommodations must be made in considering the results generated from the material samples.
As discussed herein, a primary measurement involves the use of an instrument or device to determine a characteristic or property of unknown magnitude by comparing the characteristic or property to a reference standard. The instrument used in generating the primary measurement is calibrated to display an output which can be used directly in defining the characteristic or property of interest.
In contrast, a secondary measurement is one produced by an analyzer not capable of measuring the desired property directly. Measurement data are generated, but that data must in turn be correlated into primary data before meaningful information about a characteristic or property of the material can be abstracted. Secondary measurements can be generated using spectroscopic equipment, such as by the use of, for example, the near-infrared and mid-infrared portions of the electromagnetic spectrum.
It is known to use near-infrared spectrometry and mid-infrared spectrometry in commercial processes to monitor the status of chemical reactions. This monitoring capability can involve the generation of secondary measurements with the application of statistical analysis to interpret and quantify the secondary measurement. For example, in the manufacture of carboxylic acids and derivatives from fats and oils, it is known to use near-infrared spectrometers loaded with the appropriate chemometric software to measure a number of properties of the carboxylic acids and their derivatives. This monitoring can be done during the manufacturing process on intermediate product, as well as on the finished product. The spectrometer can be operated in a stand-alone mode with the operator bringing samples to the spectrometer for at-line analysis. Alternatively, the spectrometer can be connected in line to enable monitoring of the process stream as the manufacturing operation proceeds. Thus, two commercially available near-infrared spectrometers such as the Bomem MB-160 FT-NIR spectrometer loaded with HOVAL software (Version 1.6, 1992) and AIRS software (Version 1.54, 1999) from Bomem Inc., Canada, and the Bruker Vector 22/N loaded with the Opus-NT Quant-2 software (Version 2.6, 2000) from Bruker Optik GmbH, Germany have been used to analyze intermediate and finished carboxylic acid products for acid value, iodine value, titer, stearic/palmitic acid ratio in commercial stearic acid, and for the presence of carboxylic acid methyl ester contaminants in a specific carboxylic acid. The calibration models for evaluating the above properties were derived from the Grams-PLS plus (Version 3.01 B, 1994, Galactic Industries Corporation) and Bruker Opus Quant-2. In determining the chemical properties of incoming raw materials such as tallow, coconut oil and palm kernel oil for the production of carboxylic acids, near-infrared spectrometry with appropriate chemometric techniques such as partial least squares (PLS) method has been used to evaluate the free carboxylic acid content of the starting materials, as well as iodine value and moisture content. The near-infrared monitoring can also be used to monitor the progress of the transesterification process utilizing fatty triglycerides and methanol as reactants. A near-infrared spectrometer connected to transesterification process equipment can also monitor free glycerine content, bound/combined glycerine content and methyl ester concentration. Alternatively samples can be taken during the progress of the reaction to a stand-alone near-infrared spectrometer loaded with appropriate calibration models for off-line analysis. In connection with the monitoring of the progress of a reaction, the near-infrared spectrometer can utilize a fiber optic probe connected to the spectrometer by fiber optic cable.
There is presently a high interest in the analysis of agricultural products. Genetically modified materials are of particular interest. The grain and food distribution segments in agriculture have expressed significant need for analytical technology to meet market requirements to identify and quantitate genetically modified crops, especially corn, in world markets. This need has developed rapidly. U.S. farmers have increasingly accepted crops derived from genetic engineering after the success they have experienced in the 1996 growing season. The U.S. Department of Agriculture estimated that approximately 25% of U.S. corn and 54% of U.S. soybeans produced in 2000 were grown from genetically engineered seed with input traits to provide resistance to herbicides, insecticides, or both. The composition of such input trait crops is generally macroscopically indistinguishable from similar crops without the corresponding input traits.
In contrast, the foods of the future which will incorporate improvements of direct benefit to the consumer likely will be based at least in part on crops having enhanced output traits. The composition of these enhanced crops is different from the corresponding conventional crops. Examples include high oil corn, high sucrose soybeans, and low linolenic canola. Genetically-enhanced crops can be produced either by genetic engineering, as enabled by recent advances in biotechnology, or by specially designed traditional breeding programs. Even traditional crop improvement practices can result in plants with changed genetics and enhanced properties.
The growth and the need for analytical technology for agricultural products has been the promulgation of labeling relations adopted in many regions of the world including the two largest agricultural commodity trading communities, the European Union and Japan. These labeling requirements have required or are expected to require food processors to
Hall Allen L.
Lundstedt Alan P.
Tseng Ching-Hui
Bhat Aditya
Cognis Corporation
Ettelman Aaron R.
Trzaska Steven J.
LandOfFree
On-site agricultural product analysis system and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with On-site agricultural product analysis system and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On-site agricultural product analysis system and method of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3362743