On-board GPS sensors systems

Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S215000

Reexamination Certificate

active

06184821

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to on-board GPS sensor systems for deriving parameter values useful during the operation of moving vehicles, especially automotive vehicles traveling along roads. Such a system may derive values of parameters defining aspects of vehicle dynamics, and these values may be used in furtherance of certain warning and/or control functions.
2. Background Information
The Global Positioning System, or GPS, is a constellation of earth-orbiting satellites that continually transmit their positions in space. A known GPS receiver, or GPS sensor, is able to establish its position and velocity relative to the earth's surface by processing information obtained from GPS satellites. As a GPS sensor moves latitudinally and/or longitudinally across the earth's surface, it is capable of continually presenting its position with reference to a two-dimensional, reference frame that comprises coordinates corresponding to latitude and longitude on the earth's surface, and the sensor is also capable of presenting its velocity as a vector referenced to such a coordinate system.
It is known to place GPS sensors on automotive vehicles so that position and velocity information relative to the earth's surface is available on-board.
The value of the sideslip angle of a moving vehicle, and/or the yaw rate, can be useful in various situations involving vehicle operation. For example, such information may be an indicator of a change in road surface conditions potentially causing loss of traction. As such, sideslip-angle-related information can be a useful input to a processor in furtherance of performing warning and/or control functions.
It is known to calculate the sideslip angle of a moving vehicle from measurements of both the longitudinal velocity and the lateral velocity of the vehicle. Lateral velocity may be measured by mathematical integration of the output signal of a lateral acceleration sensor. Because sideslip angle measurements are often relatively small, increased precision of such measurements is believed beneficial. Moreover, it is believed that an ability to obtain more precise measurements with cost-effective devices could contribute toward more widespread usage of warning and/or control systems for which such information is a useful input.
SUMMARY OF THE INVENTION
The present invention is believed to provide a solution for more precise and cost-effective on-board measurement of parameters related to vehicle dynamics, especially for mass-produced automotive vehicles. Accordingly, the invention offers the potential for more widespread usage of warning and/or controls systems for which such information is a useful input.
One general aspect of the invention relates to novel configurations of GPS sensors in automotive vehicles. Such novel configurations present information for processing by on-board processors to yield relevant parameter measurements.
Another general aspect relates to a system for deriving a value for a parameter defining an aspect of dynamics of a moving object traversing a multi-dimensional reference frame, the system comprising: plural sensors each disposed at a different situs on the object, each sensor being in radio communication with a positioning system having multiple stations each of which repeatedly broadcasts its respective position, and each sensor presenting information describing at least one of its position and velocity with reference to the multi-dimensional reference frame as the moving object traverses the reference frame; and a processor for processing information presented by the sensors with other vehicle-related information to derive a value for the parameter.
Still another general aspect relates to a method for deriving a value for a parameter defining an aspect of dynamics of an automotive vehicle traversing the earth's surface referenced to a multi-dimensional reference frame, the method comprising: disposing each of plural sensors at a different situs on the vehicle; placing each sensor in radio communication with a positioning system having multiple stations each of which repeatedly broadcasts its respective position; and processing at least one of sensor position and sensor velocity information presented by the sensors with reference to the multi-dimensional reference frame as the vehicle traverses the earth's surface to derive a value for the parameter.
Still another general aspect relates to an automotive vehicle comprising: plural GPS sensors each disposed at a different situs on the vehicle, each sensor being in radio communication with a global positioning system of earth-orbiting satellites that repeatedly broadcast their respective positions, and each sensor presenting information describing at least one of its position and velocity with reference to a multi-dimensional reference frame as the vehicle traverses the earth's surface; and a processor for processing information presented by the sensors with information describing their geometric relationship on the vehicle to derive information related to an aspect of vehicle operation.
Still another general aspect relates to a method for determining a travel lane boundary violation by an automotive vehicle traveling on a road surface having a defined travel lane, the method comprising: providing plural sensors on the vehicle to substantially define at least a portion of the vehicle perimeter as viewed in plan; placing each sensor in radio communication with a positioning system having multiple stations each of which repeatedly broadcasts its respective position; and processing information presented by the sensors to describe the track of the vehicle perimeter with reference to a multi-dimensional reference frame as the vehicle travels along the road surface; comparing the track of the vehicle perimeter with a stored map of the defined travel lane; and detecting violation of a boundary of the defined lane by the track of the vehicle perimeter.
Still another general aspect relates to a method for re-orienting the position of a moving vehicle on an on-board electronic map of an earth area proximate the vehicle's position wherein existing orientation is utilizing information from at least one on-board GPS sensor, the method comprising: providing at a defined position on the earth area proximate the vehicle's position, a monument that broadcasts a signal of its GPS position; and utilizing the signal from the monument to re-orient the GPS position of the vehicle to the electronic map.
Other general and more specific aspects will be set forth in the ensuing description and claims.


REFERENCES:
patent: 5999878 (1999-12-01), Hanson et al.
patent: 6052647 (2000-04-01), Parkinson et al.
patent: 6061631 (2000-05-01), Zhang

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

On-board GPS sensors systems does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with On-board GPS sensors systems, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and On-board GPS sensors systems will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2565146

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.