Omni direction vehicle with material handling tool

Motor vehicles – Steering by driving

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06830114

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to a wheeled vehicle designed to turn about a vertical axis. In particular, the invention relates to powered utility riding vehicles of the type useful for construction, airport servicing operations, plowing, warehouse utility vehicles, wheelchairs, or any vehicle where rotation-in-place steering is advantageous.
2. Description of Prior Art
Prior art vehicles are known for turning with a zero turning radius, or so called “turning on the spot.” U.S. Pat. No. 3,938,608 describes a vehicle with a single center mounted pivoting drive motor that is rotated about a vertical axis in order to change directions of the vehicle. The '608 vehicle is supported with three or more swivel wheels located at equal radial distances from the center wheel. The '608 outer profile is in the shape of a rectangle and has appendages that make close proximity maneuvering impossible next to another object such as a post or another vehicle. Furthermore, the '608 vehicle lacks tractive force because of the single drive wheel. Furthermore, a single drive wheel must be rotated in order to change the vehicle direction, and although the single drive wheel can be turned to direct the vehicle in any direction, it does not provide directional stability for the case where a force is exerted on the vehicle from an angle to the line of intended travel. For example, a force against the '608 vehicle at a 20° angle to the right or left of the line of travel would force the single '608 wheel to skid, causing loss of directional control.
Many prior art material handling vehicles, such as snow plows, use conventional vehicles designed for on-road use, equipped with a hydraulically powered plow blade attached to the front of the vehicle. Conventional vehicles are typically configured with two axles, one in front, the other in the rear. The rear axle is fixed to the vehicle and provides motive force; two additional wheels are located at the front end of the vehicle, each being steerable and connected together to provide steering of the vehicle. Since there is a distance between the fixed rear drive wheels and the axis of the steerable wheels at the front end of the vehicle, a turning radius is required that far exceeds the space actually occupied by the vehicle itself. The longer the distance between front and rear axles, the larger the turning radius that is required to change directions of the vehicle. A large turning radius makes maneuvering around tight areas difficult and often dangerous.
Another method for steering is embodied in a second category of prior art material handling vehicles, such as fork lifts. These vehicles, designed primarily for warehouse use, usually have two axles, with the rear axle having smaller, steerable wheels and the front axle having larger, non-steerable wheels. These vehicles may have smaller turn radii than the conventional on-road vehicles, because they have a shorter distance between the front and rear axles. Also, the rear wheels are often capable of turning at large angles. Typical minimum outside turn radii range from sixty to one hundred inches. In the case of fork lifts, it is advantageous to have as small a turn radius as possible; a smaller turn radius allows a narrower isle width and a concomitant increase in usable floor space for storage in a given warehouse.
Other prior art material handling vehicles, such as those with buckets used for moving earth and the like, use a concept called skid steering to obtain a zero turn radius. Vehicles using skid steering are called “skid steers.” Skid steers consist of two axles each with powered, non-steerable wheels. All four wheels rotate in a plane parallel to the vehicle's longitudinal axis. Turning the skid steer is accomplished by rotating the two wheels on the left side of the vehicle at a different speed or in a different direction than the two right wheels.
Rotating the two left wheels at the same speed but in the opposite direction as the two right wheels turns the vehicle about a vertical axis located in the geometrical center of the four wheels, that is, along a zero turn radius. However, the wheels are not in line with the turn. They are dragged transversely across their normal straight line of travel, because the axles are not located on the vertical turn axis. On soft ground, such as turf, this method of turning is usually adequate, but on asphalt or concrete, skid steering results in lurching, scuff marks, and high tire wear.
With prior art material handling vehicles, an operator must often move in reverse to maneuver in tight spaces. Even with a zero turn radius skid steer, an operator often cannot turn in place because of the swing radius of the bucket. Operators are required to look over their shoulders in order to back up. In a congested location, hazards from reversing are increased. A need exists for a material handling vehicle that requires less square footage for its footprints as well as the space required for maneuvering so that operator safety and the safety of the surroundings are enhanced.
IDENTIFICATION OF OBJECTS OF THE INVENTION
A primary object of this invention is to provide a service vehicle that has enhanced maneuverability.
Another object of the invention is to provide a service vehicle that can turn on the spot without skid steering and be of the smallest physical size relative to the space it occupies.
Another object of the invention is to provide a service vehicle which reduces the risk of accidents which may result in damage or injury to equipment or operating personnel.
Another object of the invention is to provide a service vehicle having an outer perimeter that defines an outer imaginary cylinder that encloses any equipment or appendages rigidly mounted on the vehicle thereby enhancing its capability to maneuver the vehicle without impacting objects external to the vehicle.
Another object of the invention is to provide a service vehicle with utility tools mounted thereon for materials handling.
Another object of the invention is to provide a service vehicle that can be used for towing, plowing, pushing, sweeping, vacuuming, brushing, or lifting with a high degree of maneuverability.
Another object of the invention is to provide a vehicle that can turn on the spot, maneuver easily in limited spaces such as blind or interior corners, and maneuver around varying arcs such as curved curbs or cul-de-sacs and about obstructions such as posts, parked vehicles and buildings.
Another object of the invention is to provide a vehicle for pushing, plowing, lifting, or moving various solid materials such as snow, soil, gravel, or other materials which can be pushed by a blade or brush or vacuum or blower or scooped and lifted by a bucket scoop or forklift.
Another object of the invention is to provide a vehicle capable of plowing snow, ice, soil, etc. in continuous sweeping motions without stopping or reversing direction which minimizes lost load unproductive time.
Another object of the invention is to provide a vehicle for scooping, lifting and transporting buckets of snow, soil or the like with a zero turn radius without skid steering and without lifting the load high above the ground with a cantilevered lifting arm.
Another object of the invention is to provide a vehicle for moving palletized materials from one location to another with reduced maneuvering room, making it unnecessary to reverse and change directions as in the case of moving a pallet in a warehouse from one position on an isle laterally to another position on the same isle.
Another object of the invention is to provide a forklift that can transport a pallet either in front, to the side, or behind the driver thereby providing an unobstructed view for the driver.
Another object of the invention is to provide a vehicle having a lifting capability that is largely supported by an independent set of wheels, thereby reducing the amount of ballast or counterweight required to offset a load being transported.
SUMMARY OF THE INVENTION
Th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Omni direction vehicle with material handling tool does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Omni direction vehicle with material handling tool, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Omni direction vehicle with material handling tool will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3274553

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.