Omeprazole formulation

Drug – bio-affecting and body treating compositions – Preparations characterized by special physical form – Tablets – lozenges – or pills

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S475000, C424S476000, C424S480000

Reexamination Certificate

active

06174548

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a stable formulation of omeprazole. It is well known that omeprazole is sensitive to acidic conditions and after contact with an acid, omeprazole will degrade and will not function in its intended manner. Initially, alkaline materials were added to a core of omeprazole and later an enteric coating was applied over the core to prevent the omeprazole from contacting the acidic pH conditions of the stomach. This approach is satisfactory if the product is administered within a short time after it is manufactured but if the product is stored under ambient conditions, the acidic residue of the enteric coating appears to degrade the omeprazole before it is administered to a patient. To solve this problem, the prior art has used a separate layer of a coating agent to coat a pellet core which contains omeprazole and an alkaline material which is thereafter coated with the enteric coating. This technique is described in U.S. Pat. No. 4,786,505.
This dual layer coating technique requires the application of two separate functional coating operations which increases the length of the manufacturing process and the cost of the product. The applicants have surprisingly discovered a coating system which avoids the need to use a coating layer to separate the omeprazole core from the enteric coating layer in an omeprazole dosage form. The separate coating system is based on the combined use of an enteric coating agent which is applied to cores of omeprazole as a suspension in an suitable solvent.
SUMMARY OF THE INVENTION
The present invention provides a novel dosage form of omeprazole which consists essentially of:
(a) a compressed tablet core made from a granulation comprising a therapeutically effective amount of omeprazole, a surface active agent, a filler, a pharmaceutically acceptable alkaline agent and a binder; and
(b) a single layer of coating on said core which comprises a layer of an enteric coating agent.
Accordingly, it is a primary object of this invention to provide a pharmaceutical dosage formulation of omeprazole which is stable upon prolonged storage, is stable when administered to a patient and is capable of providing the desired therapeutic effect.
It is also an object of this invention to provide a pharmaceutical dosage form of omeprazole which is bioequivalent to dosage forms of omeprazole which have an intermediate layer of an inert coating material.
It is also an object of this invention to provide a stable dosage form of omeprazole which may be produced without the need to provide an intermediate coating layer that separates the omeprazole containing core from the enteric coating layer.
These and other objects of the invention will become apparent from a review of the appended specification.
DETAILED DESCRIPTION OF THE INVENTION
The omeprazole formulation of the invention is preferably based on a compressed tablet core formed from granulation which comprises omeprazole, a surface active agent, a filler, an alkaline material and a binder.
The omeprazole may comprise from 5 to 70 wt % and preferably 10 to 30 wt % of the granulation.
The surface active agent may be any pharmaceutically acceptable, non-toxic surfactant. Suitable surface active agents include sodium lauryl sulfate, polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80 and the like.
The surface active agent may be present at a level of from 0.1 to 5 wt % and preferably 0.20 to 2.0 wt % based on the total weight of the granulation.
The alkaline material is selected from the group consisting of the sodium, potassium, calcium, magnesium and aluminum salts of phosphoric acid, carbonic acid, citric acid and aluminum/magnesium compounds such as Al
2
O
3
.6MgO.CO
2
.12H
2
O, (Mg
6
Al
2
(OH
1-6
CO
3
.4H
2
O), MgO.Al
2
O
3
.2SiO
2
.nH
2
O where n is a whole integer of 2 or more. In addition the alkaline material may be selected from lysine or arginine or from the group consisting of antacid materials such as aluminum hydroxides, calcium hydroxides, magnesium hydroxides and magnesium oxide. The alkaline agent may be present at a level of 10 to 80 wt % based on the total weight of the granulation, depending on the relative strength of the alkaline material. If the preferred arginine is employed, a level of from 20 to 60 wt % and preferably 30 to 55 wt % based on the weight of the granulation may be employed.
The binder may be any pharmaceutically acceptable, non-toxic pharmaceutically acceptable binder. The binder is preferably a water soluble polymer of the group consisting of polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxypropyl cellulose, hydroxymethyl cellulose and the like. A water soluble binder is preferred which is applied from an aqueous medium such as water at a level of from 0.1 to 10 wt % and preferably from 0.25 to 7.5 wt % of binder based on the total weight of the granulation.
A filler is used as a granulation substrate. Sugars such as lactose, dextrose, sucrose, maltose, or microcrystalline cellulose and the like may be used as fillers in the granulation composition. The filler may comprise from 25 to 50 wt % and preferably 20 to 40 wt % based on the total weight of the granulation.
A tablet disintegrant may be added which comprises corn starch, potato starch, croscarmelose sodium, crospovidone and sodium starch glycolate in an effective amount. An effective amount which may be from 3 to 7 wt % based on the total weight of the granulation.
The enteric coating agent may comprise an acid resisting material which resists acid up to a pH of above about 5.0 or higher which is selected from the group consisting of cellulose acetate phthalate, hydroxypropylmethyl cellulose phthalate, polyvinyl acetate phthalate, carboxymethylethylcellulose, Eudragit L (poly(methacrylic acid, methylmethacrylate), 1:1 ratio; MW (No. Av. 135,000—USP Type A) or Eudragit S (poly(methacrylic acid, methylmethacrylate, 1:2 ratio MW (No. Av. 135,000—USP Type B) and mixtures thereof. For example Eudragit L100-55 is a 100% polymer solids product while the Eudragit L30-55 product is a 30% w/w/aqueous dispersion of the polymer. The enteric coating agent may also include an inert processing aid in an amount from 10 to 50 wt % and preferably 20 to 40 wt % based on the total weight of the acid resisting component and the inert processing aid. The inert processing aids include finely divided forms of talc, silicon dioxide, magnesium stearate etc. Typical solvents which may be used to apply the acid resisting component-inert processing aid mixture include isopropyl alcohol, acetone, methylene chloride and the like. Generally the acid resistant component-inert processing aid mixture will be applied from a 5 to 20 wt % of acid resisting component-inert processing aid mixture based on the total weight of the solvent and the acid resistant component-inert processing aid.
The enteric coating may optionally comprise a plasticizer. Suitable plasticizers include acetyl triethyl citrate, dibutyl phthalate, tributyl citrate, triethyl citrate, acetyl tributyl citrate, propylene glycol, triacetin, polyethylene glycol and diethyl phthalate. The amount of plasticizer can vary, but will typically be present in the amount of 0 to 40% w/w based upon the weight acid resisting component of the coating, and more preferably about 10-20% w/w based upon the weight of the acid resisting component.
The granulation is formed by contacting the alkaline agent, the omeprazole, the surface active agent and the binder with a medium which may comprise any low viscosity solvent such as water, isopropyl alcohol, acetone, ethanol or the like. When fluids such as water are employed, this will usually require a weight of fluid which is about three times the weight of the dry components of the coating composition.
After the granulation is formed and dried, the granulation is tabletted and the tablets are directly coated with the enteric coating agent. A color imparting agent may be added to the enteric coating agent mixture or a rapidly dissolving seal coat containing color may be coated over the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Omeprazole formulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Omeprazole formulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Omeprazole formulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2493690

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.