Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2000-07-31
2002-12-10
Szekely, Peter (Department: 1714)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S409000, C525S527000
Reexamination Certificate
active
06492461
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to a composition of matter. Specifically, the present invention is directed to a reaction product of a moiety that can adsorb onto a particle, a moiety that can provide dispersing capability, and an optional moiety that is disposed between the other moieties to provide connections between the other moieties.
BACKGROUND OF THE INVENTION
A cementitious mixture refers to pastes, mortars, and concrete compositions comprising a hydraulic cement binder. Pastes are defined as mixtures composed of a hydraulic cement binder, either alone or in combination with pozzolans such as fly ash, silica fume, or blast furnace slag, and water. Mortars are defined as pastes that additionally include fine aggregate. Concretes additionally include coarse aggregate. These compositions may additionally include other admixtures such as set retarders, set accelerators, defoaming agents, air-entraining or air detraining agents, corrosion inhibitors, water reducing agents, pigments, and any other admixture that does not adversely affect the advantageous results obtained by the present invention.
Dispersants are substances that improve the flow characteristics of the cement slurry by breaking up cement agglomerates and freeing the water, thus giving slurries of lower viscosity and allowing desirable flow conditions to be obtained at lower pump pressures. V. S. Ramachandran,
Concrete Admixtures Handbook: Properties, Science, and Technology
, Noyes Publications (Second Edition, 1995).
Dispersants have been used in the construction industry to disperse cementitious mixtures. Dispersants such as sulfonated melamine formaldehyde condensate (SMF), sulfonated naphthalene formaldehyde condensate (BNS), and lignosulfonates are commonly used as dispersants. However, these compounds require more than the desired amount of material to achieve a desired level of concrete workability or water reduction. In addition, these materials do not achieve full range (Type A to Type F) water reducing capability, as defined in ASTM C494. For example, lignosulfonates achieve only a low to mid range (5-12%) water reduction before severe set retardation occurs.
Dispersants are a necessary component in high strength and high durability concretes. Due to the requirement for the use of low water amounts in high performance concretes, sometimes high dispersant amounts are necessary to achieve workable concretes. High BNS levels can lead to undesirable retardation of set and may not provide the required workability retention over time.
It is desirable to provide a material that is several times more efficient as a cement or concrete dispersant than the traditional materials like lignosulfonates, BNS and SMF. Improving efficiency reduces the amount of material required to achieve a desired level of concrete workability or water reduction. With respect to the presently used dispersants, lignosulfonates, BNS and SMF, it is also desirable to improve slump retention while maintaining normal setting characteristics. Providing a dispersant with full range (Type A to F) water reducing capability is also a desirable characteristic.
One improvement in the prior art was to use polycarboxylate dispersants. Polycarboxylate dispersants are structured with a polymeric backbone, such as a carbon chain backbone, with pendant moieties. The pendant moieties provide the dispersing capabilities of the dispersant. Polycarboxylate dispersants are polymers with a carbon backbone with pendant side chains, wherein at least a portion of the side chains are attached to the backbone through a carboxyl group or an ether group. For example, polyacrylic acid has carboxylic groups attached to the backbone. Also, side chain moieties such as polyoxyalkylenes can be attached to the carboxylic groups to provide further dispersing capabilities. These dispersants operate by surrounding a particle to be dispersed, and then repulsion forces between each polymer chain keeps the particles apart and more fluid.
It is therefore an object of the invention to provide oligomeric dispersants for dispersing cementitious particles, wherein the dispersant adsorbs onto the particle to be dispersed.
SUMMARY OF THE INVENTION
The present invention provides a composition of matter comprising a reaction product of component A, optionally component B, and component C; wherein each component A is independently a nonpolymeric, functional moiety that adsorbs onto a cementitious particle, and contains at least one residue derived from a first component selected from the group consisting of phosphates, phosphonates, phosphinates, hypophosphites, sulfates, sulfonates, sulfonates, alkyl trialkoxy silanes, alkyl triacyloxy silanes, alkyl triaryloxy silanes, borates, boronates, boroxines, phosphoramides, amines, amides, quaternary ammonium groups, carboxylic acids, carboxylic acid esters, alcohols, carbohydrates, phosphate esters of sugars, borate esters of sugars, sulfate esters of sugars, salts of any of the preceding moieties, and mixtures thereof; wherein component B is an optional moiety, where if present, each component B is independently a nonpolymeric moiety that is disposed between the component A moiety and the component C moiety, and is derived from a second component selected from the group consisting of linear saturated hydrocarbons, linear unsaturated hydrocarbons, saturated branched hydrocarbons, unsaturated branched hydrocarbons, alicyclic hydrocarbons, heterocyclic hydrocarbons, aryl, phosphoester, nitrogen containing compounds, and mixtures thereof; and wherein component C is at least one moiety that is a linear or branched water soluble, nonionic polymer substantially non-adsorbing to cement particles, and is selected from the group consisting of poly(oxyalkylene glycol), poly(oxyalkylene amine), poly(oxyalkylene diamine), monoalkoxy poly(oxyalkylene amine), monoaryloxy poly(oxyalkylene amine), monoalkoxy poly(oxyalkylene glycol), monoaryloxy poly(oxyalkylene glycol), poly(vinyl pyrrolidones), poly(methyl vinyl ethers), poly(ethylene imines), poly(acrylamides), polyoxazoles, and mixtures thereof; wherein if the A moiety contains any phosphate, phosphonate, phosphinate, or hypophosphite residue the composition of matter is further characterized by at least one of the following:
A) the composition of matter has a structure selected from the group consisting of:
(i) Ax—C, (ii) A
x
—C—A
x
, (iii) C—A
x
—C,
(iv) (C)
z
—B—A
x
—B—(C)
z
, (v) (A
x
)
y
—B—C—B—(A
x
)
y
, and mixtures thereof;
B) the composition of matter has a structure of (A
x)
y
—B—(C)
z
with the proviso that the B moiety and the A moiety are not bound to each other through an alkylidene amine linkage;
C) the C moiety is selected from the group consisting of poly(oxyalkylene amine), poly(oxyalkylene diamine), monoalkoxy poly(oxyalkylene amine), monoaryloxy poly(oxyalkylene amine), poly(vinyl pyrrolidones), poly(methyl vinyl ethers), poly(ethylene imines), poly(acrylamides), polyoxazoles, and mixtures thereof; wherein x is an integer from 1 to 3 and represents the number of independent A moieties, y is an integer from 1 to 3 and represents the number of independent A moieties, and z is an integer from 1 to 3 and represents the number of independent C moieties.
DETAILED DESCRIPTION OF THE INVENTION
The oligomeric cement dispersant of the present invention does not have a polymeric backbone with pendant groups like dispersants of the prior art. Rather, the oligomeric cement dispersant has a moiety that will adsorb onto the particle to be dispersed by means of one or more residues attached to an adsorbing moiety of absolute molecular weight. The adsorbing moiety acts as an “anchor” to hold the dispersant onto the particle to be dispersed.
One embodiment of the present invention is a composition of matter adapted for dispersing cementitious particles in water comprising a reaction product of component A, optionally component B, and component C.
Each component A is independently a nonpolymeric, functional moiety that adsorbs onto a particle, and contains at least one residue
Brower Lynn E.
Danko Frank
Lu Runhai
Packe-Wirth Ranier
Pickett John
MBT Holding AG
Renner Kenner Greive Bobak Taylor & Weber
Szekely Peter
LandOfFree
Oligomeric dispersant does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Oligomeric dispersant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oligomeric dispersant will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2983794