Olefin polymerization catalysts and processes for making and...

Catalyst – solid sorbent – or support therefor: product or process – Catalyst or precursor therefor – Organic compound containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C502S162000, C502S167000, C502S168000, C502S172000, C502S156000

Reexamination Certificate

active

06506704

ABSTRACT:

BACKGROUND INFORMATION
1. Field of the Invention
The subject invention is directed to an improved method of forming a non-ionic (neutral) late transition metal chelate which is useful as a catalyst for the polymerization of olefins. The improved method provides novel chelates which exhibit high catalytic activity for olefin polymerization.
2. Background of the Invention
The polyolefin industry has relied on various catalyst and free radical initiator systems to polymerize ethylene and other non-polar 1-olefins. Such polymerization has been accomplished using organometallic Ziegler-Natta coordination type catalysts, chromium catalysts, certain early transition metal catalysts, as well as free-radical type initiators. It is well known that these catalysts are highly susceptible to a range of substances which poison or deactivate their catalytic activity. For example, it is known that even trace amounts of oxygen, carbon monoxide, water, or organic substances having oxygen donor groups cause deactivation of transition metal catalysts. When such substances are present one is usually restricted to free radical initiator systems.
Two recent publications, WO 98/42664 and WO 98/42665, disclose certain novel late transition metal salicylaldimine and pyrrolaldimine chelates that can act as single-site olefin polymerization catalysts which are not oxophilic. Thus, these chelates may be used to catalyze the polymerization of ethylene alone or with other 1-olefins or cycloolefins including those having oxygen atom-containing functional groups (e.g., ether, ester, carbonyl, carboxyl, or hydroxy groups). Further, these chelates provide good catalytic activity and are resistant to being poisoned even when used in the presence of moisture or organic compounds having oxygen atom containing groups.
The disclosed process for forming these catalyst chelates includes initially deprotonating the appropriate ligand using a lithium alkyl or an alkali metal hydride followed by chelation of the deprotonated (anionic) ligand with a late transition metal coordination compound. Both of these process steps use reagents which are difficult to handle. Further, the process produces a late transition metal chelate which contains an ancillary ligand, such a triphenylphosphine, associated with the transition metal atom. It is believed that such ligand must be dissociated from the chelate to provide catalytic polymerization activity. Normally, such ligands do not completely dissociate; thus, chelates having such ancillary ligands exhibit catalytic activity which is lower than expected. Certain adjunct agents are taught to assist in ancillary ligand dissociation.
Another recent PCT publication, WO 98/30609, discloses a number of late transition metal chelates as being useful as olefin polymerization catalysts. These chelates may also contain inert functional groups, such as electron withdrawing groups, as part the chelate structure. The resultant chelate comprises a ligand group which may be a neutral bidentate ligand or a mono-anionic bidentate ligand associated with the metal atom of the chelate. In many instances the chelate exists in dimer form. Synthesis of these chelates is taught to be accomplished by protonation of suitable nickel(0) or nickel(II) precursors by a neutral ligand, preferably in the presence of phosphine or allyl ligand sponges such as copper chloride, triphenyl borane or the like.
The foregoing methods of forming non-ionic, bidentate late transition metal chelates provide products which exhibit only low or moderate catalytic activity. It would be highly desirable to have a process which is capable of forming non-ionic late transition metal chelates which are free of slow-to-dissociate ancillary ligand. Further, it would also be highly desirable to have a process which provides non-ionic late transition metal chelates which are storage stable. Still further, it would be highly desirable to have a process which provides non-ionic late transition metal chelates which exhibit high catalytic activity and extended polymerization life. It would also be highly desirable to provide a process for the polymerization of olefins where the catalyst is a highly active late transition metal chelate, where the chelate can be formed in situ in the polymerization media, and where the chelate is not poisoned by the presence of oxygenated compounds.
The present invention is directed to a process of forming non-ionic late transition metal chelates which have high catalytic activity for olefin polymerization. The present process does not require a metal alkyl- or metal hydride-assisted deprotonation of the ligand and produces chelates which are free of an associated (tightly bound) ligand entity. Further, one embodiment of the present process produces storage stable chelates. The present invention also provides a method of polymerization of 1-olefins alone or with functionalized olefins or cyclic olefins wherein the highly active catalyst is formed in situ in the polymerization medium. The process of the present invention eliminates the need for forming a mono-anionic form of the bidentate ligand and association of the resultant chelate with a labile phosphine or allyl type ligand, as preferred by prior processes.
SUMMARY OF THE INVENTION
The present process provides a highly active olefin polymerization catalyst including a neutral late transition metal chelate and involves contacting a dialkyl transition metal(II) diamine complex with a bidentate chelating ligand which is free of electron withdrawing groups and has certain sterically bulky substituents. Preferably, the ligand and dialkyl transition metal(II) diamine complex reagent are contacted in the presence of an aprotic polar liquid to provide a storage stable solid catalyst product. Alternatively, the chelate can be formed in situ and used as a polymerization catalyst.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
The present invention is directed to a method of forming certain neutral, bidentate late transition metal chelates which remain stable during storage prior to use and to the storage stable chelates. The present invention is further directed to the formation of the chelates in situ and directly used as a polymerization catalyst.
The following terms are defined herein below to aid in providing a clear teaching of the present invention:
(A) “Hydrocarbyl” group refers to a univalent organic group composed of hydrogen and carbon. If not otherwise stated, it is preferred that said hydrocarbyl group contain from 1 to 40 carbon atoms.
(B) “Hydrocarbylene” group refers to a divalent organic group composed of hydrogen and carbon. If not otherwise stated, said hydrocarbylene group may include aliphatic, aromatic and mixed aliphatic/aromatic groups.
(C) “Hydrocarbyloxy” or “oxyhydrocarbyl” group refers to a univalent organic group composed of hydrogen, oxygen and carbon wherein the oxygen may be in the form of one or more ether oxygen, ester oxygen, ketone, aldehyde or carboxylic acid group(s) or mixtures thereof.
(D) “Hydrocarbyloxyene” or “oxyhydrocarbylene” refer to a divalent organic group composed of hydrogen, oxygen and carbon atoms wherein the oxygen atom may be in the form of an ether oxygen, ester oxygen, ketone, aldehyde or carboxylic acid group(s) or mixtures thereof.
(E) “Functional group” refers to ester, alcohol, carboxylic acid, halogen, primary, secondary and tertiary amine, aldehyde, ketone, hydroxyl nitro, and sulfonyl groups.
(F) “Aryl” and “arylene” refer, respectively, to a monovalent and divalent carbocyclic aromatic ring which may consist of one or a plurality of rings (fused or non-fused).
(G) “Substituted” refers to an aryl or arylene group having one or more groups which do not interfere with the synthesis of the compound or the polymerization process for which the compound is contemplated wherein said one or more groups may be a hydrocarbyl, hydrocarbylene, oxyhydrocarbyl, oxyhydrocarbylene, inert functional group or the like.
(H) “Polymerization Unit” refers to a unit of a polymer derived from a monomer used in the polymerizati

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Olefin polymerization catalysts and processes for making and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Olefin polymerization catalysts and processes for making and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Olefin polymerization catalysts and processes for making and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3056995

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.