Oil re-refining method and apparatus

Mineral oils: processes and products – Refining – Purifying used oil

Reissue Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C208S179000, C208S352000, C208S357000, C208S361000, C208S366000, C196S102000, C196S105000, C196S114000, C196S127000, C196S132000, C196S139000, C196S141000

Reissue Patent

active

RE038366

ABSTRACT:

This invention relates to the re-refining of used oils, and in particular to the use of a multi-stage distillation process incorporating cyclonic evaporators to reclaim useful oil fractions from used oil.
Each year, about 20 million tons (150 million barrels) of used lubricating oils, such as automotive lubricating oils, gear oils, turbine oils and hydraulic oils which through usage or handling have become unfit for their intended use, are generated world-wide. Used oil accumulates in thousands of petrol stations, repair shops and industrial plant, derived from millions of cars and other machines. Lubricating oil does not wear out during use, but does become contaminated with heavy metals, water, fuel, carbon particles and degraded additives. Eventually the lubricating oil is so contaminated that it can not satisfactorily perform its lubricating function and must therefore be replaced. In addition, large amounts of other used oils, such as marine slops, tank bottoms, pipeline interface products and other contaminated mineral oil products are generated. Most of this used oil is dumped (legally or illegally) or burned as low-grade fuel, but such methods of disposal are highly detrimental to the environment and can cause serious pollution. Public opinion and legislature is increasingly demanding the material recycling, rather than the burning or dumping, of waste products. Used lubricating oil may contain 60 to 80% highly valuable base oil (generally comprising mineral oil fractions with a viscosity of not less than 20 cSt at 20′ C.), worth significantly more than heavy fuel oil. It is therefore desirable to extract and reuse this base oil.
To date, however, this has not generally been undertaken by the refiners of crude oil. This is because, although used oil represents a sizable raw material source for re-refining, its volume is relatively small in relation to the world's crude oil requirements, which currently exceed 9 million tonnes (65 million barrels) a day. In addition, used oil is contaminated by impurities which can cause expensive disruption and downtime in conventional large crude oil refineries. Furthermore, since used oil does not generally originate from one source in large volumes its collection and handling require resources which are incompatible with the normal raw material logistics of large oil companies.
It has been known since the early 1900s that used lubricating oil from engines and machinery can be recycled. This recycling grew and developed with the popularization of the automobile. During the Second World War, re-refining became more widespread due to the difficulties in supplying virgin lubricating oil. Used oil re-refining still continued in the 1960s and 1970s, but then became uneconomical. This was because the conventional re-refining processes at that time involved the addition of sulphuric acid in order to separate the contaminants from the useful hydrocarbon components of the used oil, thereby generating as a waste product a highly toxic acid sludge. With the increased use of performance-enhancing oil additives towards the end of the 1970s, the amount of acid sludge generated by conventional re-refining plant grew to an unacceptable level. In the United States of America, it has been reported by the American Petroleum Institute that, as a consequence of legislation against the landfilling of acid sludge generated by conventional plant, the number of used oil re-refining plant has dropped from 160 in the 1960s to only three today.
As an alternative to the acid treatment process for the re-refining of used oil, various evaporation/condensation processes have been proposed. In an attempt to obtain high operating efficiency, it is generally suggested that thin film evaporators be used. These evaporators include a rotating mechanism inside the evaporator vessel which creates a high turbulence and thereby reduces the residence time of feedstock oil in the evaporator. This is done in order to reduce coking, which is caused by cracking of the hydrocarbons due to impurities in the used oil. Cracking starts to occur when the temperature of the feedstock oil rises above 300° C., worsening significantly above 360° to 370° C. However, any coking which does occur will foul the rotating mechanism and other labyrinthine mechanisms such as the tube-type heat exchangers which are often found in thin film evaporators. These must therefore be cleaned regularly, which leads to considerable downtime owing to the intricate structure of the mechanisms.
It is known from WO-91/17804 to provide an evaporator which may be used in the re-refining of used oil by distillation. This evaporator comprises a cyclonic vacuum evaporator in which superheated liquid is injected tangentially into a partially evacuated and generally cylindrical vessel. The inside of the vessel is provided with a number of concentric cones stacked on top of one another which serve to provide a reflux action. As a result of coking, however, the evaporator still needs to be shut down periodically in order to undertake the intricate and time-consuming task of cleaning the cones.
According to a first aspect of the present invention, there is provided a method of re-refining used oil wherein the used oil is processed in at least one cyclonic vacuum evaporator comprising a substantially void evaporation chamber into which feedstock is substantially tangentially injected, and wherein a fraction of the feedstock is condensed in a spray condenser communicating with the evaporation chamber.
According to a second aspect of the present invention, there is provided a cyclonic vacuum evaporator provided with temperature and pressure control and comprising a substantially void evaporation chamber into which, in use, feedstock is substantially tangentially injected, and a spray condenser in communication with the evaporation chamber in which a distillate may be obtained.
Since the evaporator is arranged so that, in use, feedstock is injected substantially tangentially into a partial vacuum, a degree of flash evaporation of the feedstock will occur and a turbulent cyclonic flow of the liquid and vapour phases will be achieved. The liquid phase will tend to drop to the bottom of the evaporation chamber while the vapour phase will tend to rise to the top of the chamber. A predetermined fraction of the vapour phase is then condensed in the spray condenser, while the rest of the vapour phase is extracted from the evaporation chamber. Since the evaporation chamber is substantially free of moving parts and/or labyrinthine structures, any coking which may occur will tend to be on the inner walls of the evaporation chamber. Due to the turbulent cyclonic conditions in the evaporator, grit present in the feedstock helps to dislodge coking from the fouled surfaces. Even if coking becomes severe, it is relatively quick and simple to open the evaporator chamber and clean the interior walls, thereby avoiding long downtimes. The use of a spray condenser in this aspect of the present invention also helps to reduce coking, since the conventional labyrinthine tube-type heat exchanger system of conventional thin film evaporators is not required. In general, the spray condenser is positioned above the evaporation chamber. Since the distillate obtained in a spray condenser does not have to condense onto a metal surface, coking is further reduced.
Advantageously, the evaporator is provided with a feedstock recirculation system in which the product collected at the bottom of the evaporation chamber is recirculated to the evaporation chamber by way of a pump and a heater. The heater heats the recirculating feedstock to a higher temperature than the original feedstock, and the pump is advantageously arranged so that the flow of the recirculating feedstock through the recirculation system is greater than the flow of the original feedstock through the initial introduction pipes. The flow in the pipes and the heat exchangers is preferably kept well turbulent in order to reduce the likelihood of coking; this is achieved by keeping the fl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oil re-refining method and apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oil re-refining method and apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oil re-refining method and apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3116391

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.