Oil-free liquid chiller

Refrigeration – Processes – Lubricant handling

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C062S193000, C062S505000, C062SDIG002

Reexamination Certificate

active

06176092

ABSTRACT:

BACKGROUND OF THE INVENTION
This patent application is related to a commonly assigned U.S. patent application filed on even date herewith entitled “Liquid Chiller with Enhanced Motor Cooling and Lubrication” as well as allowed and commonly assigned U.S. Pat. No. 5,848,538 entitled “Oil and Refrigerant Pump for Centrifugal Chiller” and any divisional applications that may derive therefrom.
The present invention relates to liquid chillers. More particularly, the present invention relates to relatively large tonnage centrifugal chillers in which so-called hybrid bearings are employed and in which the lubrication of such bearings is by the refrigerant which comprises the chiller's working fluid. With still more particularity, the present invention relates to oil-free, direct drive centrifugal water chillers capable of achieving optimized part load performance and in which the cooling of the chiller's compressor drive motor is enhanced.
Refrigeration chillers are machines that use a refrigerant fluid to temperature condition a liquid, such as water, most often for purposes of using such liquid as a cooling medium in an industrial process or to comfort condition the air in a building. Refrigeration chillers of larger capacity (from two hundred or so to thousands of tons of refrigeration) are typically driven by large centrifugal compressors. At lower capacities, compressors of the screw, scroll or reciprocating type are most often used in water chiller applications.
Centrifugal compressors are compressors which, by the rotation of one or more impellers in a volute housing, compress a refrigerant gas for use in the chiller's refrigeration circuit. The impeller or impellers of a centrifugal compressor, the shaft on which they are mounted and, in the case of so-called direct drive compressors, the rotor of the compressor drive motor, weigh hundreds if not thousands of pounds. The high speed rotation of such physically large and heavy chiller components at several thousand RPM results in unique and challenging bearing lubrication issues, particularly at start-up when these components are at rest, but also during chiller shutdown when these components coast to a stop.
Centrifugal compressors are of the direct drive or gear drive type. Hence, the chillers in which such compressors are used are generally referred to as direct drive chillers or gear drive chillers.
In direct drive chillers, the rotor of the compressor's drive motor is mounted directly to the shaft on which the compressor's one or more impellers are mounted. That shaft, in turn, is typically mounted for rotation in one or more bearings which are in need of lubrication when the chiller is in operation.
In gear drive centrifugal chillers the shaft on which the one or more impellers are mounted is driven through a series of gears rather than by the direct mounting of the rotor of the compressor drive motor to the shaft on which the impellers are mounted. The gears of a gear drive chiller act to increase the speed of rotation of the impeller beyond that of the motor which drives the impeller and in so doing increase the refrigeration effect or capacity of the chiller. In the case of a gear drive chiller, both the drive gears and the bearings in which the impeller shaft rotates require lubrication, heretofore by oil, and both direct drive and gear drive chillers have most typically employed induction motors, the speeds of which are typically limited to 3600 RPM.
It can generally be stated that chillers of the direct drive type are quieter and more efficient than chillers of the gear drive type. Further, chillers of the direct drive type are viewed as being more reliable than present day chillers of the gear drive type for the reason that chillers of the gear drive type make use of multiple gears, more bearings and other rotating parts, not found in a direct drive chiller, which are susceptible to breakage and/or wear. Gear drive chillers do, however, offer certain advantages in some applications, including, in some instances, a cost advantage over direct drive chillers.
In the cases of both direct drive and gear drive large tonnage centrifugal chillers, lubrication of their rotating components has historically proven both challenging and expensive and has been exclusively or at least fundamentally accomplished by the use of oil as the lubricant. The need for such lubrication systems has vastly complicated the design, manufacture, operation, maintenance and control of centrifugal chillers of both the direct drive and gear drive type and has added great initial and operational cost to them.
Elimination of oil as a lubricant in a large tonnage centrifugal refrigeration chiller system and the use of the refrigerant which comprises the chiller's working fluid for that purpose offers potentially tremendous advantages. Among those advantages are: elimination of many chiller failure modes associated with oil-based chiller lubrication systems; elimination of so-called oil migration problems associated with the mixing of oil and refrigerant in such chiller systems; enhancement of overall system efficiency by eliminating the oil-coating of heat exchange surfaces that results from the entrainment of oil in system refrigerant and the carrying of that entrained oil into a chiller's heat exchangers; elimination of what is viewed as an environmentally unfriendly material (oil) from the chiller system as well as the problems and costs associated with the handling and disposal thereof; and, elimination of a great number of expensive and relatively complex components associated with chiller lubrication systems as well as the control and maintenance costs associated therewith.
Further, the elimination of oil as a lubricant in a centrifugal chiller system suggests the possibility of a centrifugal chiller that offers the advantages of direct drive machines yet which, by virtue of variable speed operation, is fully the equal of or superior to gear drive machines. Heretofore, particularly good part load efficiencies have been achieved in gear drive machines by the use of specially configured gear sets capable of driving a chiller's impeller at relatively very high and/or optimal speeds. As was noted earlier, however, gear drive machines do not offer many of the advantages of direct drive machines and their use brings several distinct disadvantages, the need for an oil-based lubrication system for the purpose of ensuring the adequate lubrication of the gear train being one of them.
There have been and continue to be efforts to eliminate the need for oil-based lubrication systems in centrifugal chiller applications. Such efforts have, however, heretofore focused primarily on specialized small capacity refrigeration machines in which the bearing-mounted shaft and impeller are relatively very small and lightweight and on the use of hydrostatic, hydrodynamic and magnetic bearings in applications where bearing loads are relatively very light. In that regard, hydrostatic and hydrodynamic bearings are journal-type bearings which, while relatively low cost, simple and technically well understood, are intolerant of the momentary loss or reduction of lubricant flow. The intolerance of such bearings to the loss or reduction of lubricant available to them is exacerbated in a refrigerant environment. Further, such bearings detract from the efficiency of the compressor's in which they are used as a result of the frictional losses that are inherent in such bearings as compared to the frictional loses associated with rolling element bearings.
While hydrodynamic and hydrostatic bearings lubricated by refrigerant may have been at least prospectively employed in specialized, relatively physically small capacity compressors, the use of such bearings in large tonnage centrifugal chillers poses significant difficulties due, among other things, to the masses and weights of the chiller impellers and shafts that must be rotationally started and supported in that application. The sizes and weights of such components are such as to pre

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Oil-free liquid chiller does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Oil-free liquid chiller, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Oil-free liquid chiller will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2470675

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.