Odorized seals for the detection of gas leak

Measuring and testing – With fluid pressure – Leakage

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S040700, C436S003000, C116S214000

Reexamination Certificate

active

06820464

ABSTRACT:

CROSS-REFERENCE TO RELATED APPLICATIONS
Not applicable.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not applicable.
BACKGROUND OF THE INVENTION
The present invention relates to fluid leak detection, and in particular to the leak detection of gases by odor generated by adding odiferous materials to the gases.
With the advent of the fuel cell technology and a drive for clean fuel, hydrogen gas is emerging as a leading candidate for the fuel of choice. In addition to the benefit of being oxidizable in an emission free manner, hydrogen may be obtained from an abundant, renewable, resource, water.
For hydrogen to become a consumer fuel for automobile and domestic power generation, safety is paramount. Although safe handling and use of hydrogen is well understood, warnings are needed to alert against any leaks. Hydrogen sensors are commercially available, but are not considered to be an absolute safeguard against leaks due to their potential for malfunctioning, changing air currents, etc. Human senses, in particular, the sense of smell, are considered to be the ultimate safeguard against leaks. Since hydrogen is an odorless gas, odorants are preferably incorporated in hydrogen for easy leak detection. A review of the codes, standards, regulations, recommendations, and certifications on the safety of gaseous fuels is addressed in a report, Proc. U.S. DOE Hydrogen Program Rev. (1996), Vol. 2, pages 569-604.
Odorization of gases for leak detection is well known in the natural gas and petroleum gas industries. For example, a paper by M. J. Usher (
Proc. Int. Scho. Hydrocarbon Meas.
73
rd
, pages 743-48 (1998)) reviews the history, application, compounds, and safety practices in selecting and applying odorants in the natural gas industry. Mixing small quantities of odorants with gases is a substantially universal practice in natural and petroleum gases. For example, a paper by I. Katuran (
Proc. Int. Sch. Hydrocarbon Meas.,
64
th
, pages 325-30 (1989)) reports on natural gas odorants, their safety and handling precautions, handling techniques, and methods of adding odorants to gases.
Nearly all of the methods for odorization of natural and petroleum gases consist of metering a certain amount of the odorant into a gas stream to a level where detection can be made by the human sense of smell. Natural gas for public gas supplies typically contains 5-10 mg of sulfur per cubic meter of gas. However, odorants for hydrogen used as an energy source for fuel cells have unique requirements which must be met. This is because most of the commercial odorants used in gas leak detection act as poisons for the catalysts used in hydrogen based fuel cells, most specifically for the PEM (polymer electrolyte membrane or proton exchange membrane) fuel cells. Chemical compounds based on mixtures of acrylic acid and nitrogen compounds have been adopted to achieve a sulfur-free odorization of a gas. See, for example, WO 00/11120 (PCT/EP99/05639) by Haarmann & Reimer GmbH. However, these formulations are either ineffective or do not have general acceptance by users. Also, in the use of natural gas and other petroleum gases for hydrogen generation for fuel cell applications, sulfur free natural or petroleum gases are needed, or else a desulfurization step must be incorporated in the reforming process, which adds further cost to hydrogen generation.
The PEM fuel cells are sulfur intolerant because sulfur compounds poison the noble metal catalysts used in these fuel cells. If sulfur-containing odorants are used, it would be necessary to remove sulfur containing materials, like mercaptan odorants, from the feed gas using materials like zinc oxide. The sulfur containing materials, like thiophenes, cannot be removed by zinc oxide and may require a hydrodesulfurization process, using hydrogen gas, to remove sulfur. This all will add to the cost of the process.
A further complexity for hydrogen fuel comes from the nature of the hydrogen flame propagation. When gases burn in air, their flames propagate upwards with greater ease than they propagate downwards. This is primarily due to the natural convection of hot burnt gases in an upward direction. For petroleum gases, propane and methane, the upward and downward propagating lean limits of combustion are approximately the same. However, for hydrogen, since they differ by a factor of 2.5, the amount of odorant needed for leak detection in hydrogen could be >2.5 times that needed for methane or propane. The higher quantity of the odorant needed for hydrogen odor detection further complicates the sulfur poisoning problems for hydrogen gas used in the PEM fuel cells.
In several other gas applications, particularly when gases are odorless, toxic, or are otherwise harmful, methods of leak detection using odiferous materials are also desirable. The gases included in this category are, for example, nitrogen, carbon monoxide, nitrogen trifluoride, ethylene oxide, carbon tetrafluoride, and other perfluoro gases.
Several other issues also have been encountered in the odorization of the natural and petroleum gases. The key ones are (1) hydrocarbon masking the odor of the odiferous materials, (2) adsorption of the odorant on the storage vessel and pipe walls, (3) reaction of the odorants with low molecular weight mercaptans (naturally occurring in the gas), (4) condensation of the odorants in the gas storage vessel and pipes, and (5) physical scrubbing of the mercaptans from the gas with liquids (associated with the natural gas).
Today, approximately twenty-five different blends are used as natural gas odorants. Of these twenty-five blends, seven blends are more prevalent. Almost all of the odorant agents are sulfur compounds, e.g., mercaptans (tetrabutyl mercaptan, isopropyl mercaptan, normal propyl mercaptan, secondary butyl mercaptans, ethyl mercaptans, normal butyl mercaptan, etc.), thiophenes (tetrahydrothiophene), sulfides (dimethyl sulfide, methyl ethyl sulfide), etc.
In addition to the pungent odors of these chemicals, the chemicals used are also expected to have certain other attributes, such as low vapor pressure (high boiling point), low freezing point, low specific gravity so that they are fully dispersed in the gas, and appropriate thermal properties (e.g., they will not freeze at appropriate temperatures and will not cause over odorization in the hot weather). The general quality requirements, as specified for sulfur containing odorants in ISO/DIS 13734, are: (1) a cloud point of less than −30 degrees Celsius, (2) a boiling point of less than 130 degrees Celsius, and (3) evaporation residue of less than 0.2%.
Requirements for odorants further will likely include an odorant concentration high enough to allow detection with a fuel gas concentration of ⅕ the lean limit of combustion. These requirements exist for natural gas (SAE J 1616, NFPA 52-1992) and petroleum gas (NFPA 58-1989).
It is, therefore, desired to have a method and system for the use of odorants in gas storage and delivery systems in which the odorants are not dispersed in the bulk gas but are accessible only to the leaking gas streams, thus alleviating the above said concerns and making leak detection by smell viable without adding odorants in the entire gas stream.
It is further desired to have a system and method for the use of odorants in gas storage and delivery systems which can be used for gas leak detection with the use of an odorant(s), where the odorant(s) do not contaminate the bulk gas stream.
It is also desired to have such a system and method which overcomes the difficulties and disadvantages of the prior art to provide better and more advantageous results.
BRIEF SUMMARY OF THE INVENTION
The present invention is an apparatus and method for detecting a leak of fluid from a system for storing and/or transporting a volume of the fluid. There are several embodiments of the apparatus and the method, as discussed below. In a number of the embodiments, the fluid is a pressurized gas.
With regard to the apparatus of the invention, a first embodiment is an apparatus

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Odorized seals for the detection of gas leak does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Odorized seals for the detection of gas leak, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Odorized seals for the detection of gas leak will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3332615

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.