Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2006-10-03
2011-11-29
Lewis, Patrick (Department: 1623)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C514S042000, C514S043000, C514S050000, C514S051000, C514S052000
Reexamination Certificate
active
08067391
ABSTRACT:
The present invention includes methods of treating or preventing malaria by administering an anti-malarial effective amount of 6-substituted uridine derivatives to a subject need thereof. The invention also includes new 6-substituted uridine derivatives for use as therapeutics, in particular to treat malaria.
REFERENCES:
patent: 3116282 (1963-12-01), Hunter
patent: 4872278 (1989-10-01), Ross et al.
patent: 4873228 (1989-10-01), Schmalzl
patent: 5672501 (1997-09-01), Matulic-Adamic et al.
patent: 5891684 (1999-04-01), Usman et al.
patent: 6020483 (2000-02-01), Beckvermit et al.
patent: 6130035 (2000-10-01), Brusilow
patent: 6355787 (2002-03-01), Beckvermit et al.
patent: 6927026 (2005-08-01), Pompejus et al.
patent: 158613 (1983-01-01), None
patent: 0097373 (1984-01-01), None
patent: 05140179 (1993-06-01), None
patent: 9531541 (1995-11-01), None
patent: 9618736 (1996-06-01), None
patent: 9850530 (1998-11-01), None
patent: 0018780 (2000-04-01), None
patent: 0232920 (2002-04-01), None
patent: 02069903 (2002-09-01), None
patent: 03048222 (2003-06-01), None
patent: 03064621 (2003-08-01), None
patent: 03072757 (2003-09-01), None
patent: WO 03/072757 (2003-09-01), None
patent: 2004013300 (2004-02-01), None
patent: 2005020885 (2005-03-01), None
Pragobpol, S.; Gero, A. M.; Lee, C. S.; O'Sullivan, W. J. Orotate phosphoribosyltransferase and orotidylate decarboxylase fromCrithidia luciliae: Subcellular location of the enzymes and a study of substrate channeling. Arch. Biochem. Biophys. 1984, 230, 285-293.
Queen, Susan A. et al., “In Vitro Susceptibilities ofPlasmodium falciparumto Compounds Which Inhibit Nucleotide Metabolism”, Antimicrobial Agents and Chemotherapy (1990) vol. 34, No. 7, pp. 1393-1398.
Radzicka, A.; Wolfenden, R. A proficient enzyme. Science 1995, 267, 90-93.
Rathod, Pradipsinh K. et al., “Orotidylate-Metabolizing Enzymes of the Human Malarial Parasite,Plasmodium falciparum, Differ from Host Cell Enzymes”, The Journal of Biological Chemistry (1983) vol. 258, No. 5, pp. 2852-2855.
Rathod et al., “Selective activity of 5-fluoroorotic acid againstPlasmodium Falciparumin vitro” Antimicrob. Agents Chemother. Jul. 1989, vol. 33(7), pp. 1090-1094, (whole document).
Reichard, P. The enzymatic synthesis of pyrimidines. Adv. Enzymol. Mol. Biol. 1959, 21, 263-294.
Retallack D. M. et al., “The URA5 Gene is Necessary forHistoplasma capsulatumGrowth during Infection of Mouse and Human Cells”, Infection and Immunity (1999) vol. 67, No. 2, pp. 624-629.
Reyes P. et al., “Enzymes of Purine and Pyrimidine Metabolism from the Human Malaria Parasite,Plasmodium falciparum”, Molecular Biochemistry Parasitol. (1982) vol. 5, No. 5, pp. 275-290. (Abstract).
San-Félix et al. Novel Series of TSAO-T Derivatives. Synthesis and Anti-HIV Activity of 4-,5-, and 6-Substituted Pyrimidine Analoges. J. Med. Chem. 37:453-460, 1994.
Schutz A. G. R.; Konig, S.; Hubner, G.; Tittmann, K. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Biochemistry 2005, 44, 6164-6179.
Scott, H. V.; Gero, A. M.; O'Sullivan, W. J. In vitro inhibition ofPlasmodium falciparumby pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo. Mol. Biochem. Parasitol. 1986, 18, 3-15. (Abstract).
Seymour, K. K.; Lyons, S. D.; Phillips, L.; Rieckmann, K. H.; Christopherson, R. I. Cytotoxic effects of inhibitors of de novo pyrimidine biosynthesis uponPlasmodium falciparum, Biochemistry 1994, 33, 5268-5274.
Sievers, A.; Wolfenden, R. Equilibrium of formation of the 6-carbanion of UMP, a potential intermediate in the action of OMP decarboxylase. J. Am. Chem. Soc. 2002, 124, 13986-13987.
Smee, D. F.; McKernan, P. A.; Nord, L. D.; Willis, R. C.; Petrie, C. R.; Riley, T. M.; Revankar, G. R.; Robins, R. K.; Smith, R. A. Novel pyrazolo[3,4-d]pyrimidine nucleoside analog with broad-spectrum antiviral activity. Antimicrob. Agents. Chemother. 1987, 31, 1535-1541.
Smiley, J. A.; Saleh, L. Active site probes for yeast OMP decarboxylase: Inhibition constants of UMP and thio-substituted UMP analogues and greatly reduced activity toward CMP-6-carboxylate, Bioorg. Chem. 1999, 27, 297-306.
Smilkstein, M.; Sriwilaijaroen, N.; Kelly, J. X.; Wilairat, P.; Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput anti-malarial drug screening. Antimicrob. Agents Chemother. 2004, 48, 1803-1806.
Snider, M. J.; Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 2000, 122, 11507-11508.
Sowa, T.; Ouchi, S. Facile synthesis of 5'-nucleotides by selective phosphorylation of a primary hydroxyl group of nucleosides with phosphoryl chloride. Bull. Chem. Soc. Jpn. 1975, 48, 2084-2090.
Sowa, T.; Ouchi, S. Facile synthesis of 5'-nucleotides by selective phosphorylation of a primary hydroxyl group of nucleosides with phosphoryl chloride. Bull. Chem. Soc. Jpn. 1975, 48, 2084-2090.
Tanaka, H.; Hayakawa, H.; Haraguchi, K.; Miyasaka, T. Introduction of an azido group to the C-6 position of uridine by the use of a 6-iodouridine derivative. Nucleosides & Nucleotides 1985, 4, 607-612.
Tittmann, K.; Golbik, R.; Uhlemann, K; Khailova, L.; Schneider, G.; Patel, M.; Jordan, F.; Chipman, D. M.; Duggleby, R. G.; Hübner, G. NMR analysis of covalent intermediates in thiamin diphosphate enzymes. Biochemistry 2003, 42, 7885-7891.
Todd, M. J. And Gomez, J. “Enzyme kinetics determined using calorimetry: a general assay for enzyme activity?”, Anal. Biochem. (2001) 296, pp. 179-187.
Traut T.W. et al., “The Chemistry of the Reaction Determines the Invariant Amino Acids during the Evolution and Divergence of Orotidine 5'-Monophosphate Decarboxylase”, The Journal of Biological Chemistry (2000) vol. 275, No. 37, pp. 28675-28681.
Ueda, T.; Yamamoto, M.; Yamane, A.; Imazawa, M.; Inoue, H. Conversion of uridine nucleotides to the 6-cyano derivatives: synthesis of orotidylic acid. Carbohyd. Nucleosides Nucleotides 1978, 5, 261-271.
Umezu, K.; Amaya, T.; Yoshimoto, A.; Tomita, K. J. Biochem. “Purification and Properties of Orotidine-5'-Phosphate Pyrophosphorylase and Orotidine-5'-Phosphate Decarboxylase from Bakers' Yeast”. (Tokyo) 1971, 70, 249-262.
Vilar, S. et al. Probabilistic Neural Network Model for the in Silico Evaluation of Anti-HIV Activity and Mechanism of Action. J. Med. Chem. 49:1118-1124, 2006.
Warshel, A.; Strajbl, M.; Villa, J.; Florian, J. Remarkable rate enhancement of orotidine 5'-monophosphate decarboxylase is due to transition-state stabilization rather than to ground-state destabilization. Biochemistry 2000, 39, 14728-14738.
Warshel, A.; Florian, J. Computer simulations of enzyme catalysis: finding out what has been optimized by evolution. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 5950-5955.
Wiseman, T. Williston, S., Brandts, J. F. And Lin, L. N., “Rapid measurement of binding constants and heats of binding using a new titration calorimeter”, Anal. Biochem. (1989) 179, pp. 131-137.
Wolf-Watz, M., Thai, V., Henzler-Wildman, K, Hadjipavlou, G., Eisenmesser, E. Z. And Kern, D., “Linkage between dynamics and catalysis in a thermophilic-mesophilic enzyme pair”, Nat. Struct. Mol. Biol. (2004) 11, pp. 945-949.
Wu, N.; Mo, Y.; Gao, J.; Pai, E. F. Electrostatic stress in catalysis: structure and mechanism of the enzyme orotidine monophosphate decarboxylase. Proc. Natl. Acad. Sci. USA 2000, 97, 2017-2022.
Wu, N., Christendat, D. , Dharamsi, A. And Pai, E. F., “Purification, crystallization and preliminary X-ray study of orotidine 5'-monophosphate decarboxylase”, Acta Cryst. (2000) D56, pp. 912-914.
Wu, N.; Pai, E. F. , “Crystal Structures of Inhibitor Complexes Reveal an Alternate Binding Mode in Orotidine-5'- monophosphate Decarboxylase”, Biochemistry 2002, 277, 28080-28087.
Wu, N.; Gillon, W.; Pai, E. F. J. Biol. Chem. 2002, 41, 4002.
Ahmed, A. F. et al. “Synthesis
Bello Angelica M.
Fujihashi Masahiro
Korta Lakshmi P.
Pai Emil F.
Lewis Patrick
Rothwell Figg Ernst & Manbeck P.C.
University Health Network
LandOfFree
ODCase inhibitors for the treatment of malaria does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with ODCase inhibitors for the treatment of malaria, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and ODCase inhibitors for the treatment of malaria will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4270384