Objective for a movie camera

Optical: systems and elements – Lens – With variable magnification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S823000, C359S696000

Reexamination Certificate

active

06717742

ABSTRACT:

BACKGROUND OF THE INVENTION
CROSS REFERENCE TO RELATED APPLICATION
This application relates to and claims priority to corresponding German Patent Application No. 102 15 140.7, which was filed on Apr. 5, 2002.
1. Field of the Invention
The invention relates to an objective for a movie camera for digital cinematography in accordance with the preamble of claim
1
, and to a set of objectives in accordance with the preamble of claim
15
.
2. Description of the Related Art
Apart from a rotating mirror that splits up the light in the viewfinder direction and the film direction, in conventional movie cameras only air is located between the bearing surface of the objective and the image plane, that is to say the film. The mirror is, as it were, the only mechanism that is always located between objective and film. This distance can therefore be kept very accurately and can likewise be produced exactly. Moreover, this distance is largely constant even at different temperatures, and so additional adjustment is not required here. The objective is therefore responsible only for the usual tasks, specifically the imaging optical system, the regulation of the diaphragm, the focusing and, if appropriate, a zoom mechanism. An additional mechanism is not required to compensate possible camera tolerances.
The situation is different from this in the case of digital movie cameras. Here, a plurality of optical elements affected by tolerance are located between the bearing surface of the objective and the image plane, which is represented by three CCDs. For example, complicated prismatic devices split up the images into the RGB color channels. Again, additional specific properties are further achieved with the aid of a complicated upstream filter system. A suitable compensation is required owing to this additional quantity of tolerance-affected optical elements, this also being due to the summation of the respective individual tolerances. It should therefore be possible to correct the mount-to-film distance. Movie cameras do not offer this possibility of correction, and this must therefore be integrated into the objectives. Moreover, it is further to be remarked that this correction must also be possible during normal operation, since, firstly, the tolerances can change permanently owing to the development of heat or similar and, secondly, for example, there is generally no use of zoom objectives in digital cinematography, that is to say depending on setting on a camera use is made of a plurality of objectives with different focal lengths in each case.
The necessity of correcting the mount-to-film distance, the so-called back focus correction, is sufficiently known. In the video field (for example newscasts or similar), it is customary to use zoom objectives and in this case the rear element thereof can be displaced for the purpose of back focus correction. It is very disadvantageous that in this operation there is a substantial change in the distance setting. The indication (normally the rings for distance setting/focusing of the objective) no longer corresponds exactly to the distance set, and this entails unsharpness of the image. However, viewfinders are used in the video field, and so the camera operators see when the image becomes unsharp and then immediately correct the distance setting. Here, the camera operators work less with the distance scale of the objective. It is disadvantageous, in addition, that each objective requires a different back focus traveling stroke, although the error in the mount-to-film distance is always the same.
Whereas in the case of the video technology described above, for example in order to record news or television reports, the setting and/or the accuracy of the distance scale plays a rather subordinate role, because any instances of unsharpness that occur can be detected by the camera operator in the viewfinder and corrected, this state of affairs is entirely different in cinematography, the production of movies or advertising films. Here, it is already fixed before shooting at which time actors or props are situated at which location. It is normal in cinematography for movie cameras to be operated by two camera operators, of whom one is responsible for viewing and the other, the so-called camera assistant, is responsible for image sharpness. The latter observes the scenes to be filmed and readjusts the distance without a camera viewfinder merely with the aid of the distance scale on the basis of his own estimate. This is necessary chiefly when actors may move faster or differently than was previously laid down. Since the camera assistant works only with the aid of the distance scale, the latter must be exactly correct because, by contrast with normal TV technology, in cinematography instances of unsharpness have substantial effects (size of the cinema screen, etc.).
Since the camera assistant regulates the sharpness only with the aid of the rotary distance ring with reference to the scale engraved on the objective, the latter must be very accurate. This was not much of a problem with conventional movie cameras (non-digital) since, as already mentioned above, there was no need for back focus correction. However, with digital cinematography there is a need to correct the back focus because of the tolerances of the digital movie camera. This correction of the back focus entails altering the distance scale to the effect that so-called scale spreading occurs. In the case of scale spreading, the distances of the scale marks on the rotary distance ring would actually have to change relative to one another, but said ring is a solid element that is unalterably engraved. Consequently, when correcting the back focus it is no longer possible to read off the scale accurately, as is required in cinematography.
In conjunction with fixed focal lengths, for the purpose of adjusting the back focus previous objectives for digital cinematography have an adjustable index mark for the distance scale of the rotary distance ring. By subsequently rotating this so-called index ring, the indicated value of the distance scale can be corrected for exactly one distance. Otherwise than in the case of conventional objectives, in which a rotatable scale and a fixed part with the index mark are always rotated. The sequence when shooting a movie then shapes up approximately as follows: for cameras and objectives there are so-called rental stocks that have a large number of different cameras and associated objectives. The movie people assemble their equipment for the respective set. This also includes, for example, lighting, stands, etc. Before filming is started, the optical system, that is to say camera and objective, is firstly checked and, if appropriate, corrected. This task is usually carried out by the camera assistant. The latter mounts the camera on a stand and sets up a so-called test image, with structures that can be focused with appropriate sharpness, at a specific prescribed distance (for example 3 meters). The prescribed distance is then set with the aid of the distance setting at the objective. This is followed by using the back focus correction for focusing with reference to the test image, something which can be accomplished with the aid of an HD monitor, for example. Filming is started thereafter. This process naturally has to be repeated if appropriate when changing the camera or the objective (for example for other instances of viewing).
It is very disadvantageous in this case that when a different distance is being set the indicated scale value of the objective is no longer exactly correct, since the objectives have a so-called internal focusing in which only a portion of the optics in the system is moved and this is not in a linear relationship with the adjustment of the overall objective or with the correction to the back focus.
SUMMARY OF THE INVENTION
It is therefore the object of the present invention to provide an objective for a movie camera for digital cinematography of the type mentioned at the beginning, and a set of objectives by means of which the disadvantages

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Objective for a movie camera does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Objective for a movie camera, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Objective for a movie camera will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3185632

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.