Object which has optical layers

Optical: systems and elements – Mirror – With support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C359S884000

Reexamination Certificate

active

06629763

ABSTRACT:

The invention relates to an object, comprising a substrate of a plastic material, as well as a plurality of optical layers. Such objects can be optical components such as lenses, prisms, reflectors.
A reflector comprises an essentially funnel-like base body which is reflectingly coated on its inner surface. Reflectors of this type are components of lamps of every possible type, such as, for example, spotlights. They consist of the materials glass, metal or plastic. The metal and plastic reflectors used in the automobile sector are provided with a metallic reflecting surface, which also reflects heat radiation.
In the zone of such reflectors considerable amounts of heat occur, which lead locally to temperatures of up to 200° C. If the reflectors are made of glass, then no problems arise with respect to the temperatures mentioned.
Cold-light coated reflectors of glass substrates are found today, inter alia, in the general illumination field or in the stage lighting field. The cold-light coating there reflects only the visible radiation and transmits the heat radiation.
By reason of today's spotlight geometries in motor vehicles with metallically coated reflectors, the infrared radiation reflected in this way leads to locally high thermal loads on components that follow in the beam path, such as, for example, lenses, covering panes and others. By reason of this load today these components as a rule have to be used as glass substrates and/or be protected by special coatings against the heat radiation.
In the automobile industry it is increasingly a matter of the saving of weight, since a weight reduction contributes to the saving of fuel. For this reason attempts are made insofar as possible to use plastic as a substitute material for other materials, for example, for steel. In the case of the glass reflector, however, so far this was not possible. The reflecting surface, namely, would have to be provided with a cold-light mirror. So far this has failed because it was not possible to fix such a cold-light mirror lastingly on a plastic.
There are also known processes for the production of objects comprising plastic material substrates with layers located on them. Such a process is described in DE 195 23 444 A1. There a plastic is provided with a protective layer—by means of a plasma-supported CVD process (PICVD process)—by an electric high-frequency discharge at a reduced gas pressure. There it is a matter of achieving as high as possible a viscosity of this layer for the avoidance of embrittlement.
DE 197 03 538 A1 describes a process for modifying surfaces of PMMA substrates. Here the substrate surface is provided with a protective layer. Therewith it is supposedly possible to achieve an improved adhesion of function layers subsequently to be applied. The applying of the protective layer mentioned presents an additional process step and means, therefore, additional expenditure and costs.
Further processes for applying thin layers to plastic substrates are described in DE 34 13 019 A1, EP 0 422 323 A1, DE 04 116 A1 and others. There it is also a matter, inter alia, of the adhesion of the layer that is applied to the substrate and, namely, by means of the CVD or PICVD process. DE 100 10 766 shows and describes a process and a device for coating in particular curved substrates, for example, of eyeglasses.
The processes used hitherto have not been satisfactory. The necessary adhesive strength was not achieved. On the contrary, with objects produced in such manner there is the danger of the detaching of the intermediate layer mentioned, and therewith of the entire layer pack. This can lead to the result that the object will become prematurely unusable.
Underlying the invention is the problem of giving a process with which a substrate of plastic can be lastingly and dependably provided with optical layers. In particular there is to be achieved herewith a permanent bonding of the layers to the substrate as well as of the layers among one another.
This problem is solved by the features of the independent claims.
The inventors have perceived that a lasting and dependable fixing of the alternating layers to the plastic as well as of the alternating layers among one another is attainable if the alternating layers are applied to the plastic substrate with a quite definitive process, namely by means of the so-called PICVC process (chemical plasma impulse vaporization).
In the hitherto used PICVC processes for applying layers to a substrate the interface of the substrate is disturbed or destroyed in its structure by the associated energy burden. This results in a reduction of the adhesiveness between substrate and adjoining layer. The inventors have perceived, accordingly, that the energy load which is associated with the plasma discharge must be minimized in order to enhance the adhesion. There it is a matters both of the quantity of the applied energy as well as also of the manner of its application. The admissible limit value of the load for achieving an adhesion sufficient in practice can be determined by experiment.
By the invention there can be utilized the advantages known per se of plastic material, in particular the low weight and the easy deformability, which plays a special role in automobile manufacture, as well as the avoidance of the hazards that are associated with the splintering of glass. Furthermore, if need be, it is possible to forgo the use of grounding layers such as grounding lacquers.
As plastic material there come into consideration high-performance plastics which are stable if possible up to a temperature of 100 degrees Celsius or above. Here again the PICVC process works out favorably, since the substrate temperature is kept relatively low. The layers generated are themselves hard and lasting.
As especially good as plastic materials, there have proved the following substances:
Cycloolefin polymers (COP)
Cycloolefin copolymers (COC)
Polymethyl methacrylate (PMMA), or derivatives thereof.
Several properties of the COP and COC plastics make components of COP-COC plastics with optical interference layer systems especially well suited for their use as optical components with or without treatment or coating:
(i) High transparency with visible and near (nahmen) infrared spectral range, low double refraction
low light losses and low heating-up by heat absorption
(ii) High thermal form stability
(iii) Components made of COP/COC can be produced with a precision to that of glass
(iv) Barrier effect especially against water vapor
advantageous for good adhesion of layer systems
By reason of the properties mentioned COP and COC plastics can in many cases replace glass substrates and they therewith open up new possibilities in the design and layout of optical systems. In combination with specially adapted interference layer systems, high-quality optical components are producible.
With the PICVD process one has in hand a coating technology which, besides for the coating of glass and the like, is also excellently suited to the coating of plastic. An example of application for this is a plastic reflector with cold-light reflection, such as is of interest above all for the automobile industry. Cold-light coated reflectors of glass substrates are found today inter alia in the general illumination sector or in the stage-lighting sector. The cold-light coating there reflects only the visible radiation and transmits the heat radiation.
By reason of today's headlight geometries in motor vehicles with metal coated reflectors the infrared radiation in this manner leads to high thermal loads on components that follow in the beam path, such as, for example, lenses, covering panes and the like. Because of this load, today these components must be installed as a rule as glass substrates and/or be protected against heat radiation by special coatings.
In the automobile industry it is increasingly a matter of the saving of weight, since a weight reduction contributes to the saving of fuel. For this reason attempts are made insofar as possible to use plastic material as a substitute for ot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Object which has optical layers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Object which has optical layers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Object which has optical layers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3164162

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.