Data processing: artificial intelligence – Knowledge processing system – Knowledge representation and reasoning technique
Reexamination Certificate
2004-08-14
2009-12-22
Starks, Jr., Wilbert L. (Department: 2129)
Data processing: artificial intelligence
Knowledge processing system
Knowledge representation and reasoning technique
C382S115000, C382S173000, C382S224000
Reexamination Certificate
active
07636700
ABSTRACT:
The present invention relates to a system, method, and computer program product for recognition objects in a domain which combines feature-based object classification with efficient search mechanisms based on swarm intelligence. The present invention utilizes a particle swarm optimization (PSO) algorithm and a possibilistic particle swarm optimization algorithm (PPSO), which are effective for optimization of a wide range of functions. PSO searches a multi-dimensional solution space using a population of “software agents” in which each software agent has its own velocity vector. PPSO allows different groups of software agents (i.e., particles) to work together with different temporary search goals that change in different phases of the algorithm. Each agent is a self-contained classifier that interacts and cooperates with other classifier agents to optimize the classifier confidence level. By performing this optimization, the swarm simultaneously finds objects in the scene, determines their size, and optimizes the classifier parameters.
REFERENCES:
patent: 2003/0142851 (2003-07-01), Brueckner et al.
Eberhart, Russel. Shi, Yuhui. “Particle Swarm Optimization: Developments, Applications, and Resources” IEEE, 2001, p. 81-86.
Bhanu, Blr. Lee, Sungkee. Ming, John. “Adaptive Image Segmentation Using a Genetic Algorithm.” IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, No. 12, Dec. 1995. p. 1543-1567.
R. C. Eberhart and Y. Shi, “Particle Swaim Optimization: Developments, Applications, and Resources,” 2001.
D. L. Swets, B. Punch, and J. Weng, Genetics Algorithms for Object Recognition in a complex scene, Proc. of Intl. Conference on Image Processing, vol. 2. October, pp. 23-26, 1995.
R. Krishnapuram and J. M. Keller. Quantative Analysis of Properties and Spatial Relations of Fuzzy Image Regions. Transactions on Fuzzy Systems, 1(2):98-110, 1993.
V. Ciesielski and M. Zhang, Using Genetic Algorithms to Improve the Accuracy of Object Detection, In Proceedings of the third Pacific-Asia Knowledge Discovery and Data Mining Conference, Ning Zhong and Lizhu Zhou (Eds.), Knowledge Discovery and Data Mining—Research and Practical Experiences. Tsinghua University Press, p. 19-24. Beijing, China, Apr. 26-31, 1999.
Kennedy, J., Eberhart, R. C., and Shi, Y., Swarm Intelligence San Francisco: Morgan Kaufmann Publishers, 2001.
R. Brits, A. P. Engelbrecht, and F. van den Bergh, “A Niching Particle Swarm Optimizer,” 2002.
D. Beasley, D. R. Bull, and R. R. Martin, “A Sequential Niching Technique for Multimodal Function Optimization,” Evolutionary Computation, 1(2), p. 101-125, 1993.
S. Medasani and R. Krishnapuram, “Graph Matching by Relaxation of fuzzy assignments,” IEEE Transactions on Fuzzy Systems, 9(1), 173-183, Feb. 2001.
R. Krishnapuram, S. Medasani, S. Jung and Y. Choi, “Content-Based Image Retrieval Based on a Fuzzy Approach,” IEEE Transactions on Knowledge and Data Engineering (TKDE), Oct. 2004.
N. Oliver and A. Pentland, “Graphical models for driver behavior recognition in a smart car,” Proc. Of IV2000.
K. Sato and J.K. Aggarwal, “Temporal spatio-velocity transform and its application to tracking and interaction,” CVIU 96(2004), 100-128.
S. Hongeng, R. Nevatia, and F. Bremond, “Vide-based event recognition: activity representation and probabilistic recognition methods,” CVIU 96(2004), 129-162.
G. Medioni, I. Cohen, F. Bremond, S. Hongeng, R. Nevatia, “Event detection and analysis from video streams,” IEEE PAMI 23(8), 2001, 873-889.
N. Oliver, A. Garg, and E. Horvitz, “Layered representations for learning and inferring office activity from multiple sensory channels,” CVIU 96(2004), 163-180.
A. Amir, S. Basu, G. Iyengar, C. Lin, M. Naphade, J.R. Smith, S. Srinivasa, and B. Tseng, “A multi-modal system for retrieval of semantic video events,” CVIU 96(2004), 216-236.
R.T. Collins, A. J. Lipton, and T. Kanade, “Introduction to the special section on video surveillance,” IEEE-PAMI, 22(8), Aug. 2000.
N. Oliver, B. Rosario, and A. Pentland, “A Bayesian computer vision system for moceling human interactions,” IEEE-PAMI, 22(8), Aug. 2000.
Y. Owechko, S. Medasani, and N. Srinivasa, “Classifier Swarms for Human Detection in infrared imagery,” Proc. Of the CVPR workshop on Object Tracking and Classification Beyond the Visible Spectrum (OTCBVS'04) 2004.
M.P. Windham, “Numerical classification of proximity data with assignment measure,” Journal of Classification, vol. 2, pp. 157-172, 1985.
S. Gold and A. Rangarajan, “A graduated assignment algorithm for graph matching,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 18, pp. 377-387, Apr. 1996.
J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330-1334, 2000.
Jean-Yves Bouguet, “Camera Calibration Toolbox for Matlab,” http://www.vision.caltech.edu/bouguetj/calib—doc/.
Intel OpenCV Computer Vision Library (C++), http://www.intel.com/research/mrl/research/opencv/.
Giorgio Carpaneto, Paolo Toth, “Algorithm 548: Solution of the assignment problem [H],” ACM Transactions on Mathematical Software, 6(1): 104-111, 1980.
I. Hartley, A. Zisserman, “Multiple view geometry in computer vision,” Cambridge University Press, Cambridge, UK 2000.
Longuet-Higgins, “A computer algorithm for reconstructing a scene from two projections” Nature, 293: 133-135, Sep. 1981.
T. Kailath, et al., “Linear Estimation,” Prentice Hall, NJ, ISBN 0-13-022464-2, 854pp, 2000.
P. Saisan, “Modeling Human Motion for recognition,” IS&T/SPIE 17th annual symposium, San Jose, CA 2005.
A.R. Dick, et al., “Combining Single view recognition and multiple view stereo for architectural scenes,” International Conference on Computer Vision (ICCV'01) vol. 1, Jul. 7-14, 2001, Vancouver, B.C., Canada.
G. Shakhanarovich, et al. “Integrated face and gait recognition from multiple views,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Dec. 2001, Kauai, Hawaii.
Sujit Kuthirummal, et al., “Planar shape recognition across multiple views,” In Proceedings of the Interationa Conference on Pattern Recognition (ICPR)—2002, Quebec, Canada.
Sujit Kuthirummal, et al., “Multiview constraints for recognition of planar curves in fourier domain,” Proceedings of the Indian Conference on Vision Graphics and Image Processing (ICVGIP)—2002.
A. Selinger and R.C. Nelson, “Appearance-based object recognition using multiple views,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition—Dec. 2001, Kauai, Hawaii.
F. Rojas, I. Rojas, R. M. Clemente, and C.G. Puntoner, “Nonlinear blind source separation using genetic algorithms,” in Proceedings of International Conference on Independent Component Analysis, 2001.
Y. Owechko, et al., “Vision-Based occupant sensing and recognition for intelligent airbag systems,” submitted to IEEE Trans. On Intelligent Transportation Systems, 2003.
Y. Owechko and S. Medasani, “A Swarm-based Volition/Attention Framework for Object Recognition,” IEEE Conference on Computer Vision and Pattern Recognition, San Diego, Proc. Of CVPR-WAPCV 2005.
Y. Owechko and S. Medasani, “Cognitive Swarms for Rapid Detection of Objects and Associations in Visual Imagery,” IEEE Swarm Intelligence Symposium, Pasadena, 2005.
P. Saisan, S. Medasani, and Y. Owechko “Multi-View Classifier Swarms for Pedestrian Detection and Tracking,” IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005.
N. Srinivasa, et al
Medasani Swarup
Owechko Yuri
HRL Laboratories LLC
Rifkin Ben M
Starks, Jr. Wilbert L.
Tope-McKay & Assoc.
LandOfFree
Object recognition system incorporating swarming domain... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Object recognition system incorporating swarming domain..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Object recognition system incorporating swarming domain... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4081719