Electric heating – Heating devices – Combined with container – enclosure – or support for material...
Reexamination Certificate
1999-09-23
2001-02-06
Paik, Sang (Department: 3742)
Electric heating
Heating devices
Combined with container, enclosure, or support for material...
C219S518000
Reexamination Certificate
active
06184501
ABSTRACT:
BACKGROUND OF THE INVENTION
The invention relates to an object detection system and in particular, but not exclusively, to a system for detecting the presence of a metallic cooking utensil on a non-metallic cooking surface. Such systems provide enhanced safety for cooking surfaces since heating is provided only when a cooking pot is in place on the cooking surface.
Cooking platforms capable of pot detection are well known in the art, and operate according to a variety of principles. Capacitive systems are known from, for example, EP-A-0 429 120 (U.S. Pat. No. 5,136,277), DE-A-42 24 93934, DE-A-28 31 858, DE-A-37 33 108 and DE-A-38 43 460. Optical detection systems are known from DE-A-35 33 997 and DE-A-31 17 205 and acoustic systems are known from DE-A-36 19 762. A system in which reflected radiation is detected is known from DE-A-197 29 418. Other systems include active components in the cooking pots which interact with transmitters and receivers on the cooker.
A further type of known pot detection system is one where the inductive properties of metallic cooking utensils are used to modify a magnetic field generated in the vicinity of a cooking element and hence enable the detection of the pot. A first group of inductive based systems detect a change in resonant frequency of a circuit attached to a sensor coil placed in the vicinity of a cooking element. Examples of such systems are disclosed in EP-A-0 469 189 and EP-A-442 275 (U.S. Pat. No. 5,296,684).
A second group of inductive detection systems comprise a magnetic field source in the region of a cooking element and a sensor inductively coupled thereto. Placing a metallic object in the vicinity of the source influences the inductive coupling to the sensor in a manner which can be detected. An example of such a system is described in DE-A-37 11 589. In the system described therein an a.c.-operated magnetic field generator, placed at a distance below a cooking area, generates a magnetic field directed towards the cooking area. A loop lying in the external boundary area of the a.c. field is used to monitor the influence on the a.c. field of a container placed on the cooker and thereby control the switching on and off of the heating element.
A further inductive system of the second type is described in DE-A-197 00 753 a double loop arrangement is employed in which a driver loop is attached or deposited on the underside of a glass-ceramic cooking surface. This driver loop is used to generate an RF magnetic field. One or more sensor loops are arranged within or around the driver loop and these are used to generate a voltage signal which is dependent on the magnitude of the time varying magnetic field therein. If a metallic or metal containing cooking pot is placed over the driver loop, eddy currents are induced therein which have the effect of reducing the net magnetic flux in the sensor loops. Placing a pot on the driver loop therefore has the effect of reducing the voltage generated by the sensor loop. Information regarding the presence of a cooking pot can therefore be derived from this induction signal.
In the system described in DE-A-197 00 753 transformers are incorporated between a current source and the drive loop and also between the sensor loops and the detecting electronics. It is presumed by the present inventor that such transformers are provided in order to provide isolation from electrostatic charges. Since a conventional cooking surface comprises four or five cooking areas, the number of transformers required would add significantly to the cost of manufacture of such an arrangement. Furthermore, it would appear that a separate detection circuit is provided for each sensor loop.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an alternative object detection system. The object, and others to become apparent as the description progresses, are achieved by the provision of a system for detecting the presence of a cooking vessel positioned over a heating element of a cooking hob comprising: a first drive loop for generating a time varying magnetic field upon the application of an alternating current thereto; a first sensor loop proximal to said drive loop wherein, in the absence of a cooking vessel, said time varying magnetic field generates a sensor signal in said sensor loop and said sensor signal is reduced in magnitude when a metallic cooking vessel is placed vicinal to said drive loop; a current supply for supplying said alternating current to said drive loop; and a controller connected to said current supply and said sensor loop for monitoring said sensor signal to determine the presence of said cooking vessel and for controlling said heating element in response thereto, wherein said drive loop and said sensor loop are electrically connected to each other.
By connecting said drive loop and said sensor loop electro-static discharge risks are minimized.
In a preferred embodiment the alternating current is passed to the drive loop by connection leads connected to the drive loop wherein one of the connection leads is a common lead which is also connected to the sensor loop.
Another preferred embodiment provides that the common lead has a cross-sectional width which is greater than a cross-sectional width of the other connection lead.
The system may further comprise a second drive loop and an second sensor loop positioned around said first drive and sensor loops, and wherein the first and second drive and sensor loops are electrically connected to each other.
Another preferred embodiment provides that the input leads are connected to ends of the first and second drive loops and wherein input leads connected to the second drive loop are arranged on each side of leads connected to the first drive loop.
The system may further comprise a plurality of drive loops and sensor loops for detecting the presence of a cooking vessel placed over one of a plurality of heating elements.
In yet another embodiment of the system, the plurality of drive loops and the plurality of sensor loops are electrically connected together.
The invention further provides that the sensor signals generated by the plurality of sensor loops are multiplexed to the controller.
A further embodiment provides that at least one of the drive and sensor loops has connections thereto for monitoring the electrical resistance thereof.
The system of the invention may be used to detect the presence of a cooking vessel over a single zone heating element or a two-zone heating element. In the latter case, multiple drive and sensor loops may be provided to correspond with the multiplicity of heating areas.
Drive loops and sensor loops of detection elements corresponding to separate cooking elements may be connected together to provide enhanced electrostatic discharge protection, particularly where signals are multiplexed to a single controller.
REFERENCES:
patent: 3789190 (1974-01-01), Orosy et al.
patent: 5136277 (1992-08-01), Civanelli et al.
patent: 5424512 (1995-06-01), Turetta et al.
patent: 5491423 (1996-02-01), Turetta
patent: 5893996 (1999-04-01), Gross et al.
patent: 5900174 (1999-05-01), Scott
Cherry GmbH
Paik Sang
Silverberg Sam
LandOfFree
Object detection system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Object detection system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Object detection system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2574859