Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues
Reexamination Certificate
1995-12-28
2003-01-14
Spector, Lorraine (Department: 1646)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
C530S351000, C530S402000, C536S023500
Reexamination Certificate
active
06506877
ABSTRACT:
1. INTRODUCTION
The present invention relates to the discovery, identification and characterization of nucleotides that encode Ob receptor (ObR), a receptor protein that participates in mammalian body weight regulation. The invention encompasses obR nucleotides, host cell expression systems, ObR proteins, fusion proteins, polypeptides and peptides, antibodies to the receptor, transgenic animals that express an obR transgene, or recombinant knock-out animals that do not express the ObR, antagonists and agonists of the receptor, and other compounds that modulate obR gene expression or ObR activity that can be used for diagnosis, drug screening, clinical trial monitoring, and/or the treatment of body weight disorders, including but not limited to obesity, cachexia and anorexia.
2. BACKGROUND OF THE INVENTION
Obesity represents the most prevalent of body weight disorders, and it is the most important nutritional disorder in the western world, with estimates of its prevalence ranging from 30% to 50% within the middle-aged population. Other body weight disorders, such as anorexia nervosa and bulimia nervosa which together affect approximately 0.2% of the female population of the western world, also pose serious health threats. Further, such disorders as anorexia and cachexia (wasting) are also prominent features of other diseases such as cancer, cystic fibrosis, and AIDS.
Obesity, defined as an excess of body fat relative to lean body mass, also contributes to other diseases. For example, this disorder is responsible for increased incidences of diseases such as coronary artery disease, stroke, and diabetes. (See, e.g., Nishina, P. M. et al., 1994, Metab. 43:554-558.) Obesity is not merely a behavioral problem, i.e., the result of voluntary hyperphagia. Rather, the differential body composition observed between obese and normal subjects results from differences in both metabolism and neurologic/metabolic interactions. These differences seem to be, to some extent, due to differences in gene expression, and/or level of gene products or activity (Friedman, J. M. et al., 1991, Mammalian Gene 1:130-144).
The epidemiology of obesity strongly shows that the disorder exhibits inherited characteristics (Stunkard, 1990, N. Eng. J. Med. 322:1483). Moll et al. have reported that, in many populations, obesity seems to be controlled by a few genetic loci (Moll et al. 1991, Am. J. Hum. Gen. 49:1243). In addition, human twin studies strongly suggest a substantial genetic basis in the control of body weight, with estimates of heritability of 80-90% (Simopoulos, A. P. & Childs B., eds., 1989, in “Genetic Variation and Nutrition in Obesity”, World Review of Nutrition and Diabetes 63, S. Karger, Basel, Switzerland; Borjeson, M., 1976, Acta. Paediatr. Scand. 65:279-287).
Studies of non-obese persons who deliberately attempted to gain weight by systematically over-eating were found to be more resistant to such weight gain and able to maintain an elevated weight only by very high caloric intake. In contrast, spontaneously obese individuals are able to maintain their status with normal or only moderately elevated caloric intake. In addition, it is a commonplace experience in animal husbandry that different strains of swine, cattle, etc., have different predispositions to obesity. Studies of the genetics of human obesity and of models of animal obesity demonstrate that obesity results from complex defective regulation of both food intake, food induced energy expenditure and of the balance between lipid and lean body anabolism.
There are a number of genetic diseases in man and other species which feature obesity among their more prominent symptoms, along with, frequently, dysmorphic features and mental retardation. For example, Prader-Willi syndrome (PWS) affects approximately 1 in 20,000 live births, and involves poor neonatal muscle tone, facial and genital deformities, and generally obesity.
In addition to PWS, many other pleiotropic syndromes which include obesity as a symptom have been characterized. These syndromes are more genetically straightforward, and appear to involve autosomal recessive alleles. The diseases, which include, among others, Ahlstroem, Carpenter, Bardet-Biedl, Cohen, and Morgagni-Stewart-Monel Syndromes.
A number of models exist for the study of obesity (see, e.g., Bray, G. A., 1992, Prog. Brain Res. 93:333-341, and Bray, G. A., 1989, Amer. J. Clin. Nutr. 5:891-902). For example, animals having mutations which lead to syndromes that include obesity symptoms have been identified, and attempts have been made to utilize such animals as models for the study of obesity. The best studied animal models, to date, for genetic obesity are mice models. For reviews, see e.g., Friedman, J. M. et al., 1991, Mamm. Gen. 1:130-144; Friedman, J. M. and Liebel, R. L., 1992, Cell 69:217-220.) Studies utilizing mice have confirmed that obesity is a very complex trait with a high degree of heritability. Mutations at a number of loci have been identified which lead to obese phenotypes. These include the autosomal recessive mutations obese (ob), diabetes (db), fat (fat) and tubby (tub). In addition, the autosomal dominant mutations Yellow at the agouti locus and Adipose (Ad) have been shown to contribute to an obese phenotype.
The ob and db mutations are on chromosomes
6
and
4
, respectively, but lead to a complex, clinically similar phenotype of obesity, evident starting at about one month of age, which includes hyperphagia, severe abnormalities in glucose and insulin metabolism, very poor thermoregulation and non-shivering thermogenesis, and extreme torpor and underdevelopment of the lean body mass. This complex phenotype has made it difficult to identify the primary defect attributable to the mutations (Bray G. A., et al., 1989 Amer. J. Clin. Nutr. 5:891-902).
Using molecular and classical genetic markers, the db gene has been mapped to midchromosome 4 (Friedman et al., 1991, Mamm. Gen. 1:130-144). The mutation maps to a region of the mouse genome that is syntonic with human, suggesting that, if there is a human homolog of db, it is likely to map to human chromosome 1p.
The ob gene and its human homologue have recently been cloned (Zhang, Y. et al., 1994, Nature 372:425-432). The gene appears to produce a 4.5 kb adipose tissue messenger RNA which contains a 167 amino acid open reading frame. The predicted amino acid sequence of the ob gene product indicates that it is a secreted protein and may, therefore, play a role as part of a signalling pathway from adipose tissue which may serve to regulate some aspect of body fat deposition. Further, recent studies have shown that recombinant Ob protein, also known as leptin, when exogenously administered, can at least partially correct the obesity-related phenotype exhibited by ob mice (Pelleymounter, M. A. et al., 1995, Science 269:540-543; Halalas, J. L. et al., 1995, Science 269:543-546; Campfield, L. A. et al., 1995, Science 269:546-549). Recent studies have suggested that obese humans and rodents (other than ob/ob mice) are not defective in their ability to produce ob mRNA or protein, and generally produce higher levels than lean individuals (Maffei et al., 1995, Nature Med. 1 (11):1155-1161; Considine et al., 1995, J. Clin. Invest. 95(6):2986-2988; Lohnqvist et al., 1995, Nature Med. 1:950-953; Hamilton et al., 1995, Nature Med. 1:953-956). These data suggest that resistance to normal or elevated levels of Ob may be more important than inadequate Ob production in human obesity. However, the receptor for the ob gene product, thought to be expressed in the hypothalamus, remains elusive.
Homozygous mutations at either the fat or tub loci cause obesity which develops more slowly than that observed in ob and db mice (Coleman, D. L., and Eicher, E. M., 1990, J. Heredity 81:424-427), with tub obesity developing slower than that observed in fat animals. This feature of the tub obese phenotype makes the development of tub obese phenotype closest in resemblance to the manner in which obesity develops in humans. Even so, however, the obese phenotype within such an
Culpepper Janice A
Tartaglia Louis A
Tepper Robert I
Millennium Pharmaceuticals Inc.
Millennium Pharmaceuticals Inc.
O'Hara Eileen B.
Spector Lorraine
LandOfFree
Ob receptor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Ob receptor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ob receptor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3070394