Nylon polymer blends and films made therefrom

Stock material or miscellaneous articles – Composite – Of polyamide

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C524S394000, C524S445000, C525S066000, C525S179000, C525S423000

Reexamination Certificate

active

06723443

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to blends of nylon homopolymers and copolymers with certain other polymers. More particularly, the invention pertains to blends of nylon 6 and its copolymers with certain other polymers useful to form films having high miscibility, high clarity and good processability.
2. Description of the Prior Art
It is well known that miscibility of polymer-polymer blends is very rare. This is because most polymer pairs with dissimilar structures invariably form phase-separated immiscible blends due primarily to the unfavorable intersegmental incompatibility. It is also known that nylons are especially incompatible and immiscible with other polymers due to a hydrogen bonded polyamide backbone. Only a limited type of amorphous nylons having a polyamide backbone are known to exhibit some degree of miscibility with other nylons having a similar polyamide backbone, for example nylon 6I/6T with nylon 6.
It would be desirable to provide blends of nylons with other polymers, preferably blends which are miscible.
SUMMARY OF THE INVENTION
The invention provides a polymeric composition comprising a blend of at least one polyamide component and at least one poly(hydroxyamino ether) component.
The invention also provides a polymeric film formed from a polymeric composition comprising a blend of at least one polyamide component and at least one poly(hydroxyamino ether) component.
The polymer composition also preferably includes an oxygen scavenger composition, such as an oxidizable polydiene, and a metal salt catalyst, such as a metal carboxylate salt. It is also desired that polymer compositions of this invention comprise a nanometer scale dispersed platelet type clay to further augment their barrier and oxygen scavenging properties. Such clays are normally referred to as nanoclays and they are normally composed of organo-ammonium cation exchanged montmorillonite or hectorite type smectitic clays.
The invention further provides a polymeric film formed from a polymeric composition comprising a blend of at least one polyamide component, at least one poly(hydroxyamino ether) component, optionally at least one platelet type organoclay in nanometer scale fine dispersion, and optionally at least one oxidizable polydiene, or at least one metal salt catalyst, or both.
The invention still further provides shaped articles formed from the compositions of the invention.
It has unexpectedly been found that nylon 6 and its copolymers form very homogenous, miscible blends when melt compounded with poly(hydroxyamino ether) polymers, combining the advantages of both polymers. Particularly, poly(hydroxyamino ether) polymers, such as those described in U.S. Pat. No. 5,731,094, are known to exhibit good oxygen and carbon dioxide gas barrier properties, but have poor melt processability and poor heat resistance due to lack of crystallinity, and exhibit low Tg. On the other hand, nylons are known to have poor gas barrier properties, but good melt processability and heat resistance. This miscible blend has been found to substantially improve the gas barrier properties of nylon, particularly at high humidity levels, while retaining good melt processability. Films formed from such blends also exhibit high clarity and a reduced or controlled nylon crystallization rate, which is particularly beneficial for in blown film processing, coinjection stretch blowmolding and large-diameter monofilament spinning.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The polymeric composition of the claimed invention relates most broadly to blends of nylon homopolymers and/or nylon copolymers with poly(hydroxyamino ether) polymers. Poly(hydroxyamino ether) polymers are epoxy-based thermoplastics produced through the reaction of liquid epoxy compounds and primary amines. They exhibit excellent barrier properties to atmospheric gases, good optical clarity, good adhesion to a variety of substrates, as well as good melt strength and mechanical behavior. The poly(hydroxyamino ether) polymers useful herein are described by the following formula:
wherein Ar=p- or m-phenylene; alkyl substituted p- or m-phenylene; 4,4′-isopropylidene-bis-phenylene; or 4,4′-oxy-bis-phenylene;
R=alkyl; &ohgr;-hydroxyalkyl; aryl; o-, m- or p-hydroxyaryl &ohgr;-hydroxy-(polyalkyleneoxy) alkyl; or &ohgr;-alkoxy-(polyalkyleneoxy ) alkyl;
and n is an integer from about 5 to about 1000.
A preferred poly(hydroxyamino ether) is derived from a 1:1 polyaddition reaction of an aryldiglycidyl ether and monoethanolamine, represented by the formula:
wherein Ar=p- or m-phenylene; alkyl substituted p- or m-phenylene; 4,4′-isopropylidene-bis-phenylene; or 4,4′-oxy-bis-phenylene;
and n is an integer from about 5 to about 1000.
Another preferred poly(hydroxyamino ether) component comprises a polyadduct of monoethanolamine with resorcinol diglycidyl ether or bisphenol A-diglycidyl ether or a combination thereof. Other useful poly(hydroxyamino ether) polymers may be found in U.S. Pat. Nos. 5,275,853 and 5,731,094.
Blended together with the poly(hydroxyamino ether) polymers are nylon homopolymers and/or nylon copolymers. Suitable nylons within the scope of the invention non-exclusively include homopolymers or copolymers selected from aliphatic polyamides and aliphatic/aromatic polyamides having a molecular weight of from about 10,000 to about 100,000. General procedures useful for the preparation of polyamides are well known to the art. Such include the reaction products of diacids with diamines. Useful diacids for making polyamides include dicarboxylic acids which are represented by the general formula:
HOOC—Z—COOH
wherein Z is representative of a divalent aliphatic radical containing at least 2 carbon atoms, such as adipic acid, sebacic acid, octadecanedioic acid, pimelic acid, suberic acid, azelaic acid, dodecanedioic acid, and glutaric acid. The dicarboxylic acids may be aliphatic acids, or aromatic acids such as isophthalic acid and terephthalic acid. Suitable diamines for making polyamides include those having the formula:
H
2
N(CH
2
)
n
NH
2
wherein n has an integer value of 1-16, and includes such compounds as trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine, hexadecamethylenediamine, aromatic diamines such as p-phenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulphone, 4,4′-diaminodiphenylmethane, alkylated diamines such as 2,2-dimethylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, and 2,4,4 trimethylpentamethylenediamine, as well as cycloaliphatic diamines, such as diaminodicyclohexylmethane, and other compounds. Other useful diamines include heptamethylenediamine, nonamethylenediamine, and the like.
Useful polyamide homopolymers include poly(4-aminobutyric acid) (nylon 4), poly(6-aminohexanoic acid) (nylon 6, also known as poly(caprolactam)), poly(7-aminoheptanoic acid) (nylon 7), poly(8-aminooctanoic acid)(nylon 8), poly(9-aminononanoic acid) (nylon 9), poly(10-aminodecanoic acid) (nylon 10), poly(11-aminoundecanoic acid) (nylon 11), poly(12-aminododecanoic acid) (nylon 12), nylon 4,6, poly(hexamethylene adipamide) (nylon 6,6), poly(hexamethylene sebacamide) (nylon 6,10), poly(heptamethylene pimelamide) (nylon 7,7), poly(octamethylene suberamide) (nylon 8,8), poly(hexamethylene azelamide) (nylon 6,9), poly(nonamethylene azelamide) (nylon 9,9), poly(decamethylene azelamide) (nylon 10,9), poly(tetramethylenediamine-co-oxalic acid) (nylon 4,2), the polyamide of n-dodecanedioic acid and hexamethylenediamine (nylon 6,12), the polyamide of dodecamethylenediamine and n-dodecanedioic acid (nylon 12,12) and the like. Useful aliphatic polyamide copolymers include caprolactam/hexamethylene adipamide copolymer (nylon 6,6/6), hexamethylene adipamide/caprolactam copolymer (nylon 6/6,6), trimethylene adipamide/hexamethylene azelaiamide copolymer (nylon trimethyl 6,2/6,2), hexamethylene adipamide-hexamethylene-azelaiami

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nylon polymer blends and films made therefrom does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nylon polymer blends and films made therefrom, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nylon polymer blends and films made therefrom will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3192145

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.