Numerical control apparatus

Electricity: motive power systems – Positional servo systems – Program- or pattern-controlled systems

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

318625, 29 36, G05B 1918

Patent

active

049704494

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

This invention relates to a numerical control apparatus for controlling the C axis (controlled axis) of a workpiece rotating shaft in a cylindrical grinder or three-axis lathe.


BACKGROUND ART

When a servomotor is controlled by a numerical control apparatus (CNC) using a computer, it is possible to switch between an arrangement in which the servomotor is used as a motor for positionally controlling a spindle and an arrangement in which the servomotor is used as a motor for controlling rotational velocity in the same manner as a spindle motor.
In FIG. 2, a workpiece rotating shaft is provided with a servomotor Ml and a spindle motor M2 controlled by being respectively connected to a servomotor control circuit B and a spindle control circuit C to which command signals from a control apparatus A are applied. With this method of control, however, a problem encountered is the high cost necessary for constructing the motors and their control circuits.
Accordingly, a system has been developed (FIG. 3) in which a single servomotor M0 is switchingly connected to a position control circuit D and a velocity control circuit E by a switch SW in response to a signal from the control apparatus A, thereby enabling positional control and velocity control to be realized.
FIG. 4 is a block diagram illustrating the changeover control performed by the conventional control apparatus A shown in FIG. 3. In FIG. 4, the data in a part program 1 of the CNC driven by a host computer or the like are extracted as position command signals by a decoding processor 2 and pulse distribution processor 3. The decoding processor 2 is connected to a programmable machine control (PMC) 5 via a data in/data out (DI/DO) control processor 4. A position command signal of the pulse distribution processor 3 is outputted to a servo-control processor 7 as a position command signal for each axis via an axis control processor 6. The servo-control processor 7 functions as a position control circuit with regard to a controlled-axis motor when a servomotor 9 is employed as both a spindle motor (X axis) and controlled axis (C axis) motor. In order for the position command signal to be converted into a velocity command signal for control of the controlled-axis motor, the signal is outputted to a velocity/current control circuit 8. It should be noted that N in the servomotor 9 indicates another axis.
Meanwhile, the signal that has been subjected to decoding processing enters the DI/DO control processor 4. In order to execute processing for an auxiliary function M, an S function for automatically reducing spindle rotating speed by a tape command and a T function for automatically selecting a tool, the DI/DO control processor 4 delivers a predetermined signal to the PMC 5. A spindle control and D/A conversion unit 10, which are provided in the PMC 5, and a changeover circuit 11 constitute a controller 12. In a case where the servomotor 9 has its rotational velocity controlled to serve as a spindle motor, the spindle control and D/A conversion unit 10 delivers a changeover command and velocity command voltage to the changeover circuit 11. The changeover circuit 11 responds by changing over the control mode to separate the position control circuit 7 from the velocity/current control circuit 8, and by outputting the velocity command voltage from the spindle control and D/A conversion unit 10 to the velocity/current control circuit 8. The spindle control and D/A conversion unit 10 outputs a feedback-ignore command to the servo-control processor 7 to enable open-loop control of the servomotor.
However, when rotational-velocity control and position control of a spindle are thus performed by a single servomotor, two control circuits, namely the circuit E for controlling rotational velocity and the circuit D for controlling position, are required. The result is a complicated arrangement. In addition, a command relating to control of position is not applied in the mode for commanding velocity. Therefore, when the mode is returned to that for commanding p

REFERENCES:
patent: 4080853 (1978-03-01), Goto
patent: 4683786 (1987-08-01), Kernten et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Numerical control apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Numerical control apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Numerical control apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-778924

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.