Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
1995-06-07
2001-10-02
Kunz, Gary L. (Department: 1647)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S325000, C435S320100, C536S023500, C536S023100, C424S093210
Reexamination Certificate
active
06297026
ABSTRACT:
TECHNICAL FIELD
The invention relates to a newly discovered receptor which is a member of the G-protein-coupled receptor superfamily. The receptor is expressed in endothelial cells in blood vessels. Avoidance of effects on this receptor is an essential element in limiting side effects of drugs which are administered to stimulate other receptors in this family. The invention also relates to nucleic acid sequences encoding the receptor protein or peptide.
BACKGROUND ART
Responses of animals to many therapeutic and prophylactic drugs are mediated through receptors which reside on cell surfaces. One class of such receptors comprises the G-protein-coupled receptors, whose physiological effect is mediated by a three-subunit protein complex, called G-proteins, that binds to this type of receptor with the subsequent release of a subunit, thus setting in motion additional intracellular events. Receptors of this subclass include, among others, adrenergic receptors, neuropeptide receptors, the thrombin receptor and the C140 receptor which is the subject of the herein invention. This class of receptor is characterized by the presence of seven transmembrane regions which anchor t he receptor within the cell surface.
It is the elusive goal of the designers of therapeutic substances to effect a desired response in a subject in the absence of side effects. Accordingly, pharmaceuticals designed to target a specific receptor, such as the thrombin receptor, should react with the thrombin receptor specifically and have no effect on related receptors. The C140 receptor of the present invention may be involved in controlling vascular pressure, and inadvertent stimulation or blocking of this receptor would have unpredictable and therefore undesirable results. It is therefore useful to determine in advance whether therapeutic reagents designed to target, for example, the thrombin receptor will or will not have the undesired side effect of reactivity with the C140 receptor. By providing the recombinant materials for the production of the C140 receptor in convenient assay systems, as well as agonist and antagonist reagents for use in this assay, the invention makes possible the prior determination of the presence or absence of the side effect of reactivity with the C140 receptor in candidate pharmaceuticals. This side effect will usually be undesired as it is believed that the C140 receptor responds to enzymes such as serine proteases associated with trauma and immune disturbances.
DISCLOSURE OF THE INVENTION
The invention provides methods and materials useful in assay systems to determine the propensity of candidate pharmaceuticals to exert undesirable side effects. The isolation, recombinant production and characterization of the C140 receptor permits the design of assay systems using the receptor as a substrate and using agonists and antagonists for the receptor as control reagents in the assay.
Thus, in one aspect, the invention is directed to recombinant materials associated with the production of C140 receptor. These include, for example, transfected cells which can be cultured so as to display the C140 receptor on their surfaces, and thus provide an assay system for the interaction of materials with the native C140 receptor. In general, the limitations on the host cells useful in these assay systems are that the cells have the appropriate mechanism to display the receptor on their surfaces and contain the G-protein as mediator to the intracellular response. (However assays which merely assess binding do not require the G-protein.) Most animal cells meet these requirements.
In another aspect, the invention is directed to C140 receptor agonists which mimic the activated form of the extracellular portion of the receptor protein. These agonists are useful as control reagents in the above-mentioned assays to verify the workability of the assay system. In addition, agonists for the C140 receptor may exhibit hypotensive effects in vivo. Accordingly, the agonists may be also, themselves, useful as antihypertensives.
In still another aspect, the invention is directed to C140 receptor antagonists. These antagonists comprise modified forms of the C140 receptor agonist peptides that lack the essential features required for activation of the receptor. These antagonists bind to receptor, do not activate it, and prevent receptor activation by agonists and the native receptor-binding ligand.
A second group of antagonists includes antibodies designed to bind specific portions of the receptor protein. In general, these are monoclonal antibody preparations which are highly specific for any desired region of the C140 receptor. The antibodies of the invention are also useful in immunoassays for the receptor protein, for example, in assessing successful expression of the gene in recombinant systems.
Another aspect of the invention is to provide nucleic acids encoding such a C140 receptor polypeptide and to use this nucleic acid to produce the polypeptide in recombinant cell culture for diagnostic use or for potential therapeutic use in hemostatic or immune response regulation.
In still other aspects, the invention provides an isolated nucleic acid molecule encoding a C140 receptor, labeled or unlabeled, and a nucleic acid sequence that is complementary to, or hybridizes under stringent conditions to, a nucleic acid sequence encoding a C140 receptor. The isolated nucleic acid molecule of the present invention excludes nucleic acid sequences which encode, or are complementary to nucleic acid sequences encoding, other known G protein-coupled receptors which are not C140 receptors, such as adrenergic receptors, neuropeptide receptors, thrombin receptors, and the like.
In addition, the invention provides a replicable vector comprising a nucleic acid molecule encoding a C140 receptor operably linked to control sequences recognized by a host transformed by the vector; host cells transformed with the vector; and a method of using a nucleic acid molecule encoding a C140 receptor to effect the production of a C140 receptor, comprising expressing the nucleic acid molecule in a culture of the transformed host cells and recovering a C140 receptor from the host cell culture. The nucleic acid sequence is also useful in hybridization assays for C140 receptor-encoding nucleic acid molecules.
In still further embodiments, the invention provides a method for producing C140 receptors comprising inserting into the DNA of a cell containing the nucleic acid sequence encoding a C140 receptor a transcription modulatory element in sufficient proximity and orientation to the C140 receptor coding sequence to influence transcription thereof, with an optional further step comprising culturing the cell containing the transcription modulatory element-and the C140 receptor-encoding nucleic acid sequence.
In still further embodiments, the invention provides a cell comprising a nucleic acid sequence encoding a C140 receptor and an exogenous transcription modulatory element in sufficient proximity and orientation to the above coding sequence to influence transcription thereof; and a host cell containing the nucleic acid sequence encoding a C140 receptor operably linked to exogenous control sequences recognized by the host cell.
Still further is provided a method for obtaining cells having increased or decreased transcription of the nucleic acid molecule encoding a C140 receptor, comprising:
(a) providing cells containing the nucleic acid molecule;
(b) introducing into the cells a transcription modulating element; and
(c) screening the cells for a cell in which the transcription of the nucleic acid molecule is increased or decreased.
In another aspect, the invention is related to assay systems which utilize recombinant C140 receptor to screen for agonist and antagonist activity of candidate drugs. This assay is especially useful in assuring that these therapeutic agents do not have undesired side effects caused by activation or inhibition of the C140 receptor. In some cases agonist activity at this receptor system may have therapeutic utility. Some of
Scarborough Robert M.
Sundelin Johan
COR Therapeutics Inc.
Hayes Robert C
Kunz Gary L.
Morgan & Lewis & Bockius, LLP
LandOfFree
Nucleic acids encoding the C140 receptor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acids encoding the C140 receptor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acids encoding the C140 receptor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2575846