Nucleic acids encoding BAZ1&agr; transcriptional regulator...

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S069100, C435S320100, C435S325000, C435S252300, C536S023100, C530S350000

Reexamination Certificate

active

06596482

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a novel transcriptional regulator containing a bromodomain and a gene encoding it.
BACKGROUND ART
The bromodomain is a characteristic motif of proteins found in transcriptional regulators. Proteins having a bromodomain usually contain one or two (Tamkun, J. W. et al., (1992), Nuc. Acids Res., 20:2603), but sometimes as many as five bromodomain motifs (Nicolas, R. H. and Goodwin, G. H. (1996), Gene, 175 (12):233-240). This motif is found in a wide variety of animals. For example, it is identified in yeast (Winston, F. et al., (1987), Genetics, 115:649-656; Laurent, B. C. et al., (1991), Proc. Natl. Acad. Sci. USA, 88:2687-2691), in Drosophila (Digan, M. E. et al., (1986), Dev. Biol., 114:161-169; Tamkun, J. W. et al., (1992), Cell, 68:561-572), and in the genes for transcriptional regulators in mammals (Denis, G. V. and Green, M. R. (1996), Genes and Devel., 10:261-271; Yang, X. J. et al., (1996), Nature, 382:319-324).
All transcriptional regulators containing a bromodomain serve to control signal-dependent transcription in actively proliferating cells (Tamkun, J. W. et al., (1992), Cell, 68:561-572; Haynes, S. R. et al., (1992), Nuc. Acids Res., 20:2603). Due to this feature of these transcriptional regulators, it is suggested that cancer may develop if the gene for the protein containing a bromodomain is not normally controlled. In fact, several studies have shown that human transcriptional regulators with a bromodomain RING3, p300/CBP, and PCAF may be involved in oncogenesis.
RING3 is a transcriptional regulator highly homologous with the fsh protein that regulates development of Drosophila (Haynes, S. R. et al., (1989), Dev. Biol., 134:246-257). RING3 is a nuclear serine/threonine kinase having autophosphorylating activity. This activity of RING3 correlates with a proliferating state in chronic or acute lymphocytic leukemia. For instance, when Denis and Green collected lymphocytes of peripheral blood from 10 patients suffering from leukemia, kinase activity associated with RING3 was identified in all of the 10 patients but not in normal controls (Denis, G. V. and Green, M. R. (1996), Genes and Develop., 10:261-271). Furthermore, this activity was not detected in the blood cells from patients whose leukemia had remitted by virtue of chemotherapy.
p300 and CBP (CREB binding protein) encode highly similar proteins and are thus often called p300/CBP. p300/CBP is a co-activatot for a transcriptional regulator CREB (cAMP responsive element binding protein) (Kwok, RPS et al., (1994), Nature, 370:223-226), and is considered as a key protein for growth regulation. Mutation in p300/CBP has been found in familial or sporadic cancers. Germline mutation of CBP results in Rubinstein-Taybi syndrome, which causes patients to develop various malignant tumors (Petrij, F. et al., (1995), Nature, 376:348-51), while mutation in p300 is found in sporadic colorectal and gastric cancers (Muraoka, M. et al., (1996), Oncogene, 12:1565-1569). Furthermore, CBP is fused with MOZ (Monocytic leukemia Zinc finger protein) in a t (8; 16) (p11; p13) translocation found in a certain kinds of acute myelocytic leukemia. The fusion protein has histone-acetyltransferase domains derived from both genes (Bannister, A. J. and Kouzarides, T. (1996), Nature, 384:641-643; Orgyzco, V. V. et al., (1996), Cell, 87:953-959; Brownwell, J. E. and Allis, C. D. (1996), Curr. Opin. Genet. Devel., 6:176-184). Since acetylated histone is known to be associated with transcriptionally active chromatin, the fusion protein may be involved in leukemogenesis by way of aberrant histone acetylation (Brownwell, J. E. and Allis, C. D. (1996), Curr. Opin. Genet. Devel., 6:176-184).
p300/CBP is also considered to be associated with cancer since it interacts with known oncogene products. For example, p300/CBP binds to E1A protein (Arany, Z. et al., (1995), Nature, 374:81-84), one of the early genes of adenovirus. p300 is also a co-activator for transcription factors, c-Myb (Dai, P. et al., (1996), Genes Dev., 10:528-540) and c-Fos (Bannister, A. J. and Kouzarides, T. (1996), Nature, 384:641-643).
PCAF, is considered to inhibit the interaction of E1A with p300/CBP by competing with E1A for binding to p300/CBP (Yang, X. J. et al., (1996), Nature, 382:319-324). PCAF also has histone-acetyltransferase activity.
Thus, it is thought that transcriptional regulators containing a bromodomain areinvolved in regulation ofcell growth, and that their aberrant regulation may be closely related to various diseases, particularly to cancer. Transcriptional regulators containing a bromodomain have thus recently received much attention as novel targets for specifically treating cancer.
DISCLOSURE OF THE INVENTION
The objective of the present invention is to provide a novel transcriptional regulator containing a bromodomain and a gene encoding it, and a method of screening for a candidate compound as a medicament by using them.
As a result of research to achieve the above objective, the inventors successfully isolated several genes, each of which encodes a novel transcriptional regulator containing a bromodomain. The genes were isolated from a human testis cDNA library using primers designed based on EST sequences which had been identified using known bromodomain sequences as probes. In addition, the inventors have found that the structures of the isolated genes resemble one another, thus they constitute a family. The inventors have also found that the isolated genes or proteins encoded by them can be used to screen the candidate compounds for a medicament that controls the activity of the proteins or other factors interacting therewith.
Thus, the present invention relates to novel transcriptional regulators each having a bromodomain and the genes encoding them, and to a method of screening for a candidate compound as a medicament using said proteins or genes, and more specifically relates to:
(1) a transcriptional regulator having a bromodomain, which comprises the amino acid sequence shown in SEQ ID NO:1, 13, 21, 27, or 29, or said sequence wherein one or more amino acids are substituted, deleted, or added;
(2) a transcriptional regulator having a bromodomain, which is encoded by DNA hybridizing with DNA comprising the nucleotide sequence shown in SEQ ID NO:2, 14, 22, 28 or 30;
(3) DNA coding for the transcriptional regulator according to (1) or (2);
(4) a vector comprising the DNA according to (3);
(5) a transformant expressibly retaining the DNA according to (3);
(6) a method for producing the transcriptional regulator according to (1) or (2), which comprises culturing the transformant according to (5);
(7) an antibody binding to the transcriptional regulator according to (1) or (2);
(8) a method of screening a compound having binding activity to the transcriptional regulator according to (1) or (2), wherein the method comprises contacting a sample with the transcriptional regulator according to (1) or (2) and selecting a compound having binding activity to the transcriptional regulator according to (1) or (2);
(9) a compound having binding activity to the transcriptional regulator according to (1) or (2), which can be isolated according to the method of (8);
(10) the compound according to (9), which is naturally occurring; and
(11) DNA specifically hybridizing with DNA comprising the nucleotide sequence shown in SEQ ID NO:2, 14, 22, 28, or 30 and having at least 15 nucleotides.
Here, the term “transcriptional regulator(s)” means protein(s) that control gene expression, and “bromodomain” means an amino acid motif conserved among the transcriptional regulators associated with signal-dependent transcription, wherein said motif is involved in protein-protein interaction.
The present invention relates to novel transcriptional regulators having a bromodomain (BAZ family). The nucleotide sequences of cDNA isolated by the inventors, which belong to BAZ family, are shown in SEQ ID NO:2 (BAZ(BAZ1&agr;)), SEQ ID NO:14 (BAZ2&agr;), SEQ ID NO:22 (BAZ2&bgr;), and SEQ ID NO:28 and 30 (BAZ1&bgr;). The amino acid sequences

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acids encoding BAZ1&agr; transcriptional regulator... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acids encoding BAZ1&agr; transcriptional regulator..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acids encoding BAZ1&agr; transcriptional regulator... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3074978

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.