Nucleic acid sequences encoding capsaicin receptor and uses...

Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S252300, C435S320100, C536S023500

Reexamination Certificate

active

06335180

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to nucleic acid and amino acid sequences encoding a receptor for vanilloid compound and polypeptides related to such vanilloid compound receptors, and to the use of these sequences in the diagnosis, study, and treatment of disease.
BACKGROUND OF THE INVENTION
Pain is initiated when the peripheral terminals of a particular group of sensory neurons, called nociceptors, are activated by noxious chemical, mechanical, or thermal stimuli. These neurons, whose cell bodies are located in various sensory ganglia, transmit information regarding tissue damage to pain processing centers in the spinal cord and brain (Fields Pain (McGraw-Hill, N.Y. 1987)). Nociceptors are characterized, in part, by their sensitivity to capsaicin, a natural product of capsicum peppers that is the active ingredient of many “hot” and spicy foods. In mammals, exposure of nociceptor terminals to capsaicin leads initially to the perception of pain and the local release of neurotransmitters. With prolonged exposure, these terminals become insensitive to capsaicin, as well as to other noxious stimuli (Szolcsanyi in
Capsaicin in the Study of Pain
(ed. Wood) pgs. 255-272 (Academic Press, London, 1993)). This latter phenomenon of nociceptor desensitization underlies the seemingly paradoxical use of capsaicin as an analgesic agent in the treatment of painful disorders ranging from viral and diabetic neuropathies to rheumatoid arthritis (Campbell in
Capsaicin and the Study of Pain
(ed. Wood) pgs. 255-272 (Academic Press, London, 1993); Szallasi et al. 1996 Pain 68:195-208). While some of this decreased sensitivity to noxious stimuli may reflect reversible changes in the nociceptor, such as depletion of inflammatory mediators, the long-term loss of responsiveness can be explained by death of the nociceptor or destruction of its peripheral terminals following capsaicin exposure (Jancso et al. 1977 Nature 270:741-743; Szolcsanyi, supra).
Responsivity to capsaicin has been used to define sensory afferent fibers that transmit signals in response to noxious stimuli (chemical, thermal, and mechanical stimuli); however, the precise mechanism of action has remained unclear. Electrophysiological (Bevan et al. 1990 Trends Pharmacol. Sci 11:330-333; Oh et al. 1996 J. Neuroscience 16:1659-1667) and biochemical (Wood et al. 1988 J. Neuroscience 8:3208-3220) studies have clearly shown that capsaicin excites nociceptors by increasing plasma membrane conductance through formation or activation of nonselective cation channels. While the hydrophobic nature of capsaicin has made it difficult to rule out the possibility that its actions are mediated by direct perturbation of membrane lipids (Feigin et al. 1995 Neuroreport 6:2134-2136), it has been generally accepted that this compounds acts at a specific receptor site on or within sensory neurons due to observations that capsaicin derivatives show structure-function relationships and evoke dose-dependent responses (Szolcsanyi et al. 1975 Drug. Res. 25:1877-1881; Szolcsanyi et al. 1976 Drug Res. 26:33-37)). The development of capsazepine, a competitive capsaicin antagonist (Bevan et al. 1992 Br. J. Pharmacol. 107:544-552) and the discovery of resiniferatoxin, an ultrapotent capsaicin analogue from Euphorbia plants that mimics the cellular actions of capsaicin (deVries et al. 1989 Life Sci. 44:711-715; Szallasi et al. 1989 Neuroscience 30:515-520) further suggest that the capsaicin mediates its effects through a receptor. The nanomolar potency of resiniferatoxin has facilitated its use as a high affinity radioligand to visualize saturable, capsaicin- and capsazepine-sensitive binding sites on nociceptors (Szallasi 1994 Gen. Pharmac. 25:223-243). Because a vanilloid moiety constitutes an essential structural component of capsaicin and resiniferatoxin, the proposed site of action of these compounds has been more generally referred to as the vanilloid receptor (Szallasi 1994 supra). The action of capsaicin, resiniferatoxin, and the antagonist capsazepine have been well characterized physiologically using primary neuronal cultures (see, e.g., Szolcsanyi, “Actions of Capsaicin on Sensory Receptors,” Bevan et al. “Cellular Mechanisms of the Action of Capsaicin,” and James et al. “The Capsaicin Receptor,” all in Capsaicin in the Study of Pain, 1993 Academic Press Limited, pgs. 1-26, 27-44, and 83-104, respectively; Bevan et al. 1990, supra).
The analgesic properties of capsaicin and capsaicinoids are of much interest for their uses in the treatment of pain and inflammation associated with a variety of disorders (see, e.g, Fusco et al. 1997 Drugs 53:909-914; Towheed et al. 1997 Semin. Arthritis Rheum 26:755-770; Appendino et al. 1997 Life Sci 60:681-696 (describing activities and application of resiniferatoxin); Campbell et al. “Clinical Applications of Capsaicin and Its Analogues” in Capsaicin in the Study of Pain 1993, Academic Press pgs. 255-272). Although capsaicin and capsaicin related compounds can evoke the sensation of pain, cause hyperalgesia, activate autonomic reflexes (e.g., elicit changes in blood pressure), and cause release of peptides and other putative transmitters from nerve terminals (e.g., to induce bronochoconstriction and inflammation), prolonged exposure of sensory neurons to these compounds leads to desensitization of the neurons to multiple modalities of noxious sensory stimuli without compromising normal mechanical sensitivity or motor function, and without apparent central nervous system depression. It is this final phenomena that makes capsaicins and related compounds of great interest and potential therapeutic value.
Despite the intense interest in capsaicin and related compounds and their effects upon sensory afferent, the receptor(s) through which these compounds mediate their effects have eluded isolation and molecular characterization. Thus, the development of elegant systems for screening or characterizing new capsaicin receptor-binding compounds, or for identifying endogenous, tissue-derived mediators of pain and/or inflammation, have been severely hampered. To date the only means of assessing the activity of compounds as capsaicin receptor agonists or antagonists has been to examined their effects on sensory neurons in culture or in intact animals. The present invention solves this problem.
SUMMARY
The present invention features vanilloid receptor polypeptides and vanilloid receptor-related polypeptides, specifically the capsaicin receptor and capsaicin receptor-related polypeptides, as well as nucleotide sequences encoding capsaicin receptor and capsaicin receptor-related polypeptides. In related aspects the invention features expression vectors and host cells comprising polynucleotides that encode capsaicin receptor or capsaicin receptor-related polypeptide. In other related aspects, the invention features transgenic animals having altered capsaicin receptor expression, due to, for example, the presence of an exogenous wild-type or modified capsaicin receptor-encoding polynucleotide sequence. The present invention also relates to antibodies that bind specifically to a capsaicin receptor polypeptide and/or capsaicin receptor-related polypeptide, and methods for producing capsaicin receptor and capsaicin receptor-related polypeptides.
In one aspect the invention features a method for identifying compounds that bind a capsaicin receptor polypeptide, preferably a compound that binds a capsaicin receptor polypeptide and affects a cellular response associated with capsaicin receptor biological activity (e.g., intracellular calcium flux).
In another aspect the invention features a method for detecting a vanilloid compound in a sample, where the vanilloid compound has activity in binding a capsaicin receptor polypeptide, by contacting a sample suspected of containing a vanilloid compound with a cell (e.g, an oocyte (e.g., an amphibian oocyte) or a mammalian cell) expressing a capsaicin receptor polypeptide and detecting an alteration of a cellular response associated with capsaicin receptor activity in the capsaic

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid sequences encoding capsaicin receptor and uses... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid sequences encoding capsaicin receptor and uses..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid sequences encoding capsaicin receptor and uses... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2817857

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.