Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai
Reexamination Certificate
2000-05-12
2002-11-26
Yucel, Remy (Department: 1636)
Drug, bio-affecting and body treating compositions
Designated organic active ingredient containing
Carbohydrate doai
C435S069300, C435S091400
Reexamination Certificate
active
06486135
ABSTRACT:
FIELD OF INVENTION
The present invention is related to the field of Respiratory Syncytial Virus (RSV) vaccines and is particularly concerned with vaccines comprising nucleic acid sequences encoding the fusion (F) protein of RSV.
BACKGROUND OF INVENTION
Respiratory syncytial virus (RSV), a negative-strand RNA virus belonging to the Paramyxoviridae family of viruses, is the major viral pathogen responsible for bronchiolitis and pneumonia in infants and young children (ref. 1—Throughout this application, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. The disclosures of these references are hereby incorporated by reference into the present disclosure). Acute respiratory tract infections caused by RSV result in approximately 90,000 hospitalizations and 4,500 deaths per year in the United States (ref. 2). Medical care costs due to RSV infection are greater than $340 M annually in the United States alone (ref. 3). There is currently no licensed vaccine against RSV. The main approaches for developing an RSV vaccine have included inactivated virus, live-attenuated viruses and subunit vaccines.
The F protein of RSV is considered to be one of the most important protective antigens of the virus. There is a significant similarity (89% identity) in the amino acid sequences of the F proteins from RSV subgroups A and B (ref. 3) and anti-F antibodies can cross-neutralize viruses of both subgroups as well as protect immunized animals against infection with viruses from both subgroups (ref. 4). Furthermore, the F protein has been identified as a major target for RSV-specific cytotoxic T-lymphocytes in mice and humans (ref. 3 and ref. 5).
The use of RSV proteins as vaccines may have obstacles. Parenterally administered vaccine candidates have so far proven to be poorly immunogenic with regard to the induction of neutralizing antibodies in seronegative humans or chimpanzees. The serum antibody response induced by these antigens may be further diminished in the presence of passively acquired antibodies, such as the transplacentally acquired maternal antibodies which most young infants possess. A subunit vaccine candidate for RSV consisting of purified fusion glycoprotein from RSV infected cell cultures and purified by immunoaffinity or ion-exchange chromatography has been described (ref. 6). Parenteral immunization of seronegative or seropositive chimpanzees with this preparation was performed and three doses of 50 &mgr;g were required in seronegative animals to induce an RSV serum neutralizing titre of approximately 1:50. Upon subsequent challenge of these animals with wild-type RSV, no effect of immunization on virus shedding or clinical disease could be detected in the upper respiratory tract. The effect of immunization with this vaccine on virus shedding in the lower respiratory tract was not investigated, although this is the site where the serum antibody induced by parenteral immunization may be expected to have its greatest effect. Safety and immunogenicity studies have been performed in a small number of seropositive individuals. The vaccine was found to be safe in seropositive children and in three seronegative children (all >2.4 years of age). The effects of immunization on lower respiratory tract disease could not be determined because of the small number of children immunized. One immunizing dose in seropositive children induced a 4-fold increase in virus neutralizing antibody titres in 40 to 60% of the vaccinees. Thus, insufficient information is available from these small studies to evaluate the efficacy of this vaccine against RSV-induced disease. A further problem facing subunit RSV vaccines is the possibility that inoculation of seronegative subjects with immunogenic preparations might result in disease enhancement (sometimes referred to as immunopotentiation), similar to that seen in formalin inactivated RSV vaccines. In some studies, the immune response to immunization with RSV F protein or a synthetic RSV FG fusion protein resulted in a disease enhancement in rodents resembling that induced by a formalin-inactivated RSV vaccine. The association of immunization with disease enhancement using non-replicating antigens suggests caution in their use as vaccines in seronegative humans.
Live attenuated vaccines against disease caused by RSV may be promising for two main reasons. Firstly, infection by a live vaccine virus induces a balanced immune response comprising mucosal and serum antibodies and cytotoxic T-lymphocytes. Secondly, infection of infants with live attenuated vaccine candidates or naturally acquired wild-type virus is not associated with enhanced disease upon subsequent natural reinfection. It will be challenging to produce live attenuated vaccines that are immunogenic for younger infants who possess maternal virus-neutralizing antibodies and yet are attenuated for seronegative infants greater than or equal to 6 months of age. Attenuated live virus vaccines also have the risks of residual virulence and genetic instability.
Injection of plasmid DNA containing sequences encoding a foreign protein has been shown to result in expression of the foreign protein and the induction of antibody and cytotoxic T-lymphocyte responses to the antigen in a number of studies (see, for example, refs. 7, 8, 9). The use of plasmid DNA inoculation to express viral proteins for the purpose of immunization may offer several advantages over the strategies summarized above. Firstly, DNA encoding a viral antigen can be introduced in the presence of antibody to the virus itself, without loss of potency due to neutralization of virus by the antibodies. Secondly, the antigen expressed in vivo should exhibit a native conformation and, therefore, should induce an antibody response similar to that induced by the antigen present in the wild-type virus infection. In contrast, some processes used in purification of proteins can induce conformational changes which may result in the loss of immunogenicity of protective epitopes and possibly immunopotentiation. Thirdly, the expression of proteins from injected plasmid DNAs can be detected in vivo for a considerably longer period of time than that in virus-infected cells, and this has the theoretical advantage of prolonged cytotoxic T-cell induction and enhanced antibody responses. Fourthly, in vivo expression of antigen may provide protection without the need for an extrinsic adjuvant.
The ability to immunize against disease caused by RSV by administration of a DNA molecule encoding an RSV F protein was unknown before the present invention. In particular, the efficacy of immunization against RSV induced disease using a gene encoding a secreted form of the RSV F protein was unknown. Infection with RSV leads to serious disease. It would be useful and desirable to provide isolated genes encoding RSV F protein and vectors for in vivo administration for use in immunogenic preparations, including vaccines, for protection against disease caused by RSV and for the generation of diagnostic reagents and kits. In particular, it would be desirable to provide vaccines that are immunogenic and protective in humans, including seronegative infants, that do not cause disease enhancement (immunopotentiation).
SUMMARY OF INVENTION
The present invention relates to a method of immunizing a host against disease caused by respiratory syncytial virus, to nucleic acid molecules used therein, and to diagnostic procedures utilizing the nucleic acid molecules. In particular, the present invention is directed towards the provision of nucleic acid respiratory syncytial virus vaccines.
In accordance with one aspect of the invention, there is provided an immunogenic composition for in vivo administration to a host for the generation in the host of a protective immune response to RSV F protein, comprising a non-replicating vector comprising:
a first nucleotide sequence encoding an RSV
Ewasyshyn Mary E.
Klein Michel H.
Li Xiaomao
Sambhara Suryaprakash
Aventis Pasteur Limited
Loeb Bronwen M.
Sim & McBurney
Yucel Remy
LandOfFree
Nucleic acid respiratory syncytial virus vaccines does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acid respiratory syncytial virus vaccines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid respiratory syncytial virus vaccines will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2988141