Nucleic acid respiratory syncytial virus vaccines

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

4242111, 435 693, 435 914, 4353201, A61K 3170, A61K 39155, C12N 1564, C12P 2102

Patent

active

060228644

DESCRIPTION:

BRIEF SUMMARY
FIELD OF INVENTION

The present invention is related to the field of Respiratory Syncytial Virus (RSV) vaccines and is particularly concerned with vaccines comprising nucleic acid sequences encoding the fusion (F) protein of RSV.


BACKGROUND OF INVENTION

Respiratory syncytial virus (RSV), a negative-strand RNA virus belonging to the Paramyxoviridae family of viruses, is the major viral pathogen responsible for bronchiolitis and pneumonia in infants and young children (ref. 1--Throughout this application, various references are referred to in parenthesis to more fully describe the state of the art to which this invention pertains. Full bibliographic information for each citation is found at the end of the specification, immediately preceding the claims. The disclosures of these references are hereby incorporated by reference into the present disclosure). Acute respiratory tract infections caused by RSV result in approximately 90,000 hospitalizations and 4,500 deaths per year in the United States (ref. 2). Medical care costs due to RSV infection are greater than $340M annually in the United States alone (ref. 3). There is currently no licensed vaccine against RSV. The main approaches for developing an RSV vaccine have included inactivated virus, live-attenuated viruses and subunit vaccines.
The F protein of RSV is considered to be one of the most important protective antigens of the virus. There is a significant similarity (89% identity) in the amino acid sequences of the F proteins from RSV subgroups A and B (ref. 3) and anti-F antibodies can cross-neutralize viruses of both subgroups as well as protect immunized animals against infection with viruses from both subgroups (ref. 4). Furthermore, the F protein has been identified as a major target for RSV-specific cytotoxic T-lymphocytes in mice and humans (ref. 3 and ref. 5).
The use of RSV proteins as vaccines may have obstacles. Parenterally administered vaccine candidates have so far proven to be poorly immunogenic with regard to the induction of neutralizing antibodies in seronegative humans or chimpanzees. The serum antibody response induced by these antigens may be further diminished in the presence of passively acquired antibodies, such as the transplacentally acquired maternal antibodies which most young infants possess. A subunit vaccine candidate for RSV consisting of purified fusion glycoprotein from RSV infected cell cultures and purified by immunoaffinity or ion-exchange chromatography has been described (ref. 6). Parenteral immunization of seronegative or seropositive chimpanzees with this preparation was performed and three doses of 50 .mu.g were required in seronegative animals to induce an RSV serum neutralizing titre of approximately 1:50. Upon subsequent challenge of these animals with wild-type RSV, no effect of immunization on virus shedding or clinical disease could be detected in the upper respiratory tract. The effect of immunization with this vaccine on virus shedding in the lower respiratory tract was not investigated, although this is the site where the serum antibody induced by parenteral immunization may be expected to have its greatest effect. Safety and immunogenicity studies have been performed in a small number of seropositive individuals. The vaccine was found to be safe in seropositive children and in three seronegative children (all >2.4 years of age). The effects of immunization on lower respiratory tract disease could not be determined because of the small number of children immunized. One immunizing dose in seropositive children induced a 4-fold increase in virus neutralizing antibody titres in 40 to 60% of the vaccinees. Thus, insufficient information is available from these small studies to evaluate the efficacy of this vaccine against RSV-induced disease. A further problem facing subunit RSV vaccines is the possibility that inoculation of seronegative subjects with immunogenic preparations might result in disease enhancement (sometimes referred to as immunopotentiation), similar to that seen in formalin inactivat

REFERENCES:
patent: 5589466 (1996-12-01), Felgner et al.
Tang et al. (1993) High-level and erythroid-specific expression of human glucose-6-phosphate dehydrogenase in transgenic mice. J. Biol. Chem. 268:9522-9525, May 1993.
Wathan et al. (1989) Immunization of cotton rats with the human respiratory syncytial virus F glycoprotein produced using a baculovirus vector. J. Infect. Dis. 159:255-264, Feb. 1989.
Wertz et al. (1987) Expression of the fusion protein of human respiratory syncytial virus from recombinant vaccinia virus vectors and protection of vaccinated mice. J. Virol. 61:293-301, Feb. 1987.
Collis et al. (1990) Definition of the minimal requirements within the human beta-globin gene and the dominant control region for high level expression. EMBO J. 9:233-240, Jan. 1990.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid respiratory syncytial virus vaccines does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid respiratory syncytial virus vaccines, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid respiratory syncytial virus vaccines will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1681599

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.