Chemistry: molecular biology and microbiology – Vector – per se
Reexamination Certificate
1998-05-13
2001-07-24
Schwartzman, Robert A. (Department: 1636)
Chemistry: molecular biology and microbiology
Vector, per se
C536S023100, C536S024100
Reexamination Certificate
active
06265211
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed generally to an isolated nucleic acid molecule encompassing a neocentromere or a functional derivative thereof or a latent, synthetic or hybrid form thereof and its use inter alia in developing a range of eukaryotic artificial chromosomes including mammalian (e.g. human) and non-mammalian artificial chromosomes. Such artificial chromosomes are useful in a range of genetic therapies.
BACKGROUND OF THE INVENTION
Bibliographic details of the publications referred to by author in this specification are collected at the end of the description.
The rapidly increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the medical and allied health fields. A particularly important area is in mammalian including human genetics and the molecular mechanisms behind some genetic abnormalities. Progress in research in this area has been hampered by the lack of a cloned nucleic acid molecule encompassing a human centromere. The identification and cloning of a human centromere will promote the development of techniques for introducing genes into eukaryotic cells and in particular mammalian including human cells and will be an important asset to gene therapy and the development of a range of genetic diagnostic tests.
The centromere is an essential structure for sister chromatid cohesion and proper chromosomal segregation during mitotic and meiotic cell divisions. The centromere of the budding yeast
Saccharomyces cerevisiae
has been extensively studied and shown to be contained within a relatively short DNA segment of 125 bp that is organized into an 3-bp (CDEI) and 26-bp (CDEIII) domain, separated by a 78- to 87-bp, highly AT-rich, middle (CDEII) domain (Clarke and Carbon, 1985). The centromere of the fission yeast
Schizosaccharomyces pombe
is considerably larger, ranging from 40 to 100 kb, and consists of a central core DNA element of 4 to 7 kb flanked on both sides by inverted repeat units (Steiner et al., 1993). Recently, the functional DNA components of a higher eukaryotic centromere have been characterized in a minichromosome from
Drosophila melanogaster
and shown to consist of a 220-kb essential core DNA flanked by 200 kb of highly repeated sequences on one side (Murphy and Karpen, 1995).
The mammalian centromere, like the centromeres of all higher eukaryotes studied to date, contains a great abundance of highly repetitive, heterochromatic DNA. For example, a typical human centromere contains 2 to 4 Mb of the 171-bp &agr;-satellite repeat (Wevrick and Willard 1989, 1991; Trowell et al., 1993), plus a smaller and more variable quantity of a 5-bp satellite III DNA (Grady et al., 1992; Trowell et al., 1993). The role of these satellite sequences is presently unclear. Transfection of a cloned 17-kb uninterrupted &agr;-satellite array into cultured simian cells (Haaf et al., 1992) or a 120-kb &agr;-satellite-containing YAC into human and hamster cells (Larin et al., 1994) appear to confer centromere function at the sites of integration. Other workers have analyzed rearranged Y chromosomes (Tyler-Smith et al., 1993), or dissected the centromere of the human Y chromosome with cloned telomeric DNA (Brown et al., 1994) and suggested that 150 to 200 kb of &agr;-satellite DNA plus ~300 kb of adjacent sequences are associated with human centromere function. In addition, a human X-derived minichromosome that retained 2.5 Mb of &agr;-satellite array has been produced by telomere-associated chromosome fragmentation (Farr et al., 1995). In all these studies, it is not known whether non-&agr;-satellite DNA sequences are embedded within the centromeric site and operate independently of, or in concert with, the &agr;-satellite DNA.
In mammals, four constitutive centromere-binding proteins, CENP-A, CENP-B, CENP-C, and CENP-D, have been characterized to varying extents and implicated to have possible direct roles in centromere function. CENP-A a protein localized to the outer kinetochore domain, is a centromere-specific core histone that shows sequence homology to the histone H3 protein and may serve to differentiate the centromere from the rest of the chromosome at the most fundamental level of chromatin structure—the nucleosome (Sullivan et a., 1994). CENP-B, a protein which associates with the centromeric heterochromatin through its binding to the CENP-B box motif found in primate &agr;-satellite and mouse minor satellite DNA, probably has a role in packaging centromeric heterochromatic DNA—a role which, however, may not be indispensable since the protein is undetectable on the Y chromosome (Pluta et al., 1990) and is found on the inactive centromeres of dicentric chromosomes (Earnshaw et al., 1989). CENP-C has been shown to be located at the inner kinetochore plate and is postulated to have an essential although yet undetermined centromere function, as seen, for example, from inhibition of mitotic progression following microinjection of anti-CENP-C antibodies into cells (Bernat et al., 1990; Tomkiel et al., 1994) and from its association with the active but not the inactive centromeres of dicentric chromosomes (Earnshaw et al., 1989; Page et al., 1995; Sullivan and Schwartz 1995). Finally, CENP-D (or RCC1) is a guanine exchange factor that appears to have a general cellular role that is neither specific nor clear for the centromere (Kingwell and Rattner 1987; Bischoff et al., 1990; Dasso, 1993). More recently, a new role for the mammalian centromere as a “marshalling station” for a host of “passenger proteins” (such as INCENPs, MCAK, CENP-E, CENP-F, 3F3/2 antigens, and cytoplasmic dynein), has been recognized (reviewed by Earnshaw and Mackay, 1994, and Pluta et al., 1995). These passenger proteins, whose appearance at the centromere is transient and tightly regulated by the cell cycle, provide vital functions that include motor movement of chromosomes, modulation of spindel dynamics, nuclear organization, intercellular bridge structure and function, sister chromatid cohesion and release, and cytokinesis. At present, except for CENP-B, none of the constitutive or passenger proteins have been demonstrated to bind mammalian centromere DNA directly.
In work leading up to the present invention, the inventors identified in a patient (hereinafter referred to as “BE”) an unusual human marker chromosome, mardell 10, which is 100% stable in mitotic division both in patient BE and in established fibroblast and transformed lymphoblast cultures. In accordance with the present invention, a region of the mardel (10) chromosome has been cloned together with the corresponding region from a normal human subject. The nucleic acid molecules cloned contain no substantial &agr;-satellite repeats yet are mitotically stable. The nucleic acid molecules encompass therefore, a new form of centromere referred to herein as a “neocentromere”. The identification and cloning of a eukaryotic neocentromere without substantial &agr;-satellite DNA repeat sequences now provides the means of generating a range of eukaryotic artificial chromosomes such as mammalian including human artificial chromosomes with uses in genetic therapy, transgenic plant and animal production and recombinant protein production. A range of diagnostic reagents is now also obtainable using the cloned neocentromere.
SUMMARY OF THE INVENTION
Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide sequences referred to in the specification are defined following the bibliography.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.
A fibroblast cell line 920158 carrying the mardel marker chromosome was deposited at the European Collection of Cell Cultures (ECACC), Centre for Applied Microbiology Research, Salisbury, Wiltshire, SP4 0JG, UK on May 1, 1997 under Accession No. 97051716. Bacterial artific
Cancilla Michael Robert
Choo Kong-Hong Andy
Du Sart Desiree
Amrad Operations Pty. Ltd.
Sandals William
Schwartzman Robert A.
Scully Scott Murphy & Presser
LandOfFree
Nucleic acid molecules comprising a neocentromere does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acid molecules comprising a neocentromere, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid molecules comprising a neocentromere will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2492154