Nucleic acid modifying enzymes

Chemistry: molecular biology and microbiology – Enzyme – proenzyme; compositions thereof; process for... – Transferase other than ribonuclease

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S183000, C435S069100, C435S455000, C530S350000, C530S358000, C536S023100, C536S023200, C536S023400, C536S023700

Reexamination Certificate

active

06627424

ABSTRACT:

FIELD OF THE INVENTION
This invention provides for an improved generation of novel nucleic acid modifying enzymes. The improvement is the joining of a sequence-non-specific nucleic-acid-binding domain to the enzyme in a manner that enhances the ability of the enzyme to bind and catalytically modify the nucleic acid.
BACKGROUND OF THE INVENTION
The efficiency of a nucleic acid modifying enzyme, i.e., the amount of modified product generated by the enzyme per binding event, can be enhanced by increasing the stability of the modifying enzyme
ucleic acid complex. The prior art has suggested that attachment of a high probability binding site, e.g., a positively charged binding tail, to a nucleic acid modifying enzyme can increase the frequency with which the modifying enzyme interacts with the nucleic acid (see, e.g., U.S. Pat. No. 5,474,911). The present invention now provides novel modifying enzymes in which the double-stranded conformation of the nucleic acid is stabilized and the efficiency of the enzyme increased by joining a sequence-non-specific double-stranded nucleic acid binding domain to the enzyme, or its catalytic domain. The modifying proteins that are processive in nature exhibit increased processivity when joined to a binding domain compared to the enzyme alone. Moreover, both processive and non-processive modifying enzymes exhibit increased efficiency at higher temperatures when joined to a typical binding domain described herein.
SUMMARY OF THE INVENTION
The present invention provides a protein consisting of at least two heterologous domains wherein a first domain that is a sequence-non-specific double-stranded nucleic acid binding domain is joined to a second domain that is a catalytic nucleic acid modifying domain having a processive nature, where the presence of the sequence-non-specific double-stranded nucleic acid binding domain enhances the processive nature of the nucleic acid modifying domain compared to an identical protein not having a sequence-non-specific nucleic acid binding domain joined thereto. In one aspect of the invention, the nucleic acid modifying domain can have a polymerase activity, which can be thermally stable, e.g., a Thermus polymerase domain. In alternative embodiments, the catalytic domain is an RNA polymerase, a reverse transcriptase, a methylase, a 3′ or 5′ exonuclease, a gyrase, or a topoisomerase.
In a particular embodiment, a sequence-non-specific nucleic acid binding domain of the protein can specifically bind to polyclonal antibodies generated against Sac7d or Sso7d. Alternatively, the sequence-non-specific nucleic acid binding domain can contain a 50 amino acid subsequence that has 50% amino acid similarity to Sso7d. The nucleic acid binding domain can also be Sso7d.
In another embodiment, a protein of the invention contains a sequence-non-specific double-stranded nucleic acid binding domain that specifically binds to polyclonal antibodies generated against a PCNA homolog of
Pyrococcus furiosus
, or can be a PCNA homolog of
Pyrococcus furiosus.
The invention also provides a protein consisting of at least two heterologous domains, wherein a first domain that is a sequence-non-specific double-stranded nucleic acid binding domain is joined to a second domain that is a catalytic nucleic-acid-modifying domain, where the presence of the sequence-non-specific nucleic-acid binding domain stabilizes the double-stranded conformation of a nucleic acid by at least 1° C. compared to an identical protein not having a sequence-non-specific nucleic acid binding domain joined thereto. The nucleic acid modifying domain of such a protein can have polymerase activity, which can be thermally stable. The nucleic-acid-modifying domain can also have RNA polymerase, reverse transcriptase, methylase, 3′ or 5′ exonuclease, gyrase, or topoisomerase activity.
In further embodiments, the sequence-non-specific nucleic-acid-binding domain can specifically bind to polyclonal antibodies generated against either Sac7d or Sso7d, frequently Sso7d, or contains a 50 amino acid subsequence containing 50% or 75% amino acid similarity to Sso7d. Often, the sequence-non-specific nucleic-acid-binding domain is Sso7d.
Proteins of the invention include a protein wherein the sequence-non-specific nucleic-acid-binding domain specifically binds to polyclonal antibodies generated against the PCNA homolog of
Pyrococcus furiosus
; often the binding domain is the PCNA homolog of
Pyrococcus furiosus.
In another aspect, the invention provides methods of modifying nucleic acids using the proteins. One embodiment is a method of modifying a nucleic acid in an aqueous solution by: (i) contacting the nucleic acid with a protein comprising at least two heterologous domains, wherein a first domain that is a sequence-non-specific nucleic-acid-binding domain is joined to a second domain that is a catalytic nucleic-acid-modifying domain having a processive nature, where the sequence-non-specific nucleic-acid-binding domain: a. binds to double-stranded nucleic acid, and b. enhances the processivity of the enzyme compared to an identical enzyme not having the sequence non-specific nucleic-acid-binding domain fused to it, and wherein the solution is at a temperature and of a composition that permits the binding domain to bind to the nucleic acid and the enzyme to function in a catalytic manner; and (ii) permitting the catalytic domain to modify the nucleic acid in the solution.
In another aspect, the invention provides a method of modifying a nucleic acid by: (i) contacting the nucleic acid with an aqueous solution containing a protein having at least two heterologous domains, wherein a first domain that is a sequence-non-specific double-stranded nucleic-acid-binding domain is joined to a second domain that is a catalytic nucleic-acid-modifying domain, where the presence of the sequence-non-specific nucleic-acid-binding domain stabilizes the formation of a double-stranded nucleic acid compared to an otherwise identical protein not having the sequence-non-specific nucleic-acid-binding domain joined to it; and, wherein the solution is at a temperature and of a composition that permits the binding domain to bind to the nucleic acid and the enzyme to function in a catalytic manner; and (ii) permitting the catalytic domain to modify the nucleic acid in the solution. The methods of modifying a nucleic acid can employ any of the protein embodiments described herein.
DEFINITIONS
“Archaeal small basic DNA-binding protein” refers to protein of between 50-75 amino acids having either 50% homology to a natural Archaeal small basic DNA-binding protein such as Sso-7d from
Sulfolobus sulfataricus
or binds to antibodies generated against a native Archaeal small basic DNA-binding protein.
“Catalytic nucleic-acid-modifying domains having a processive nature” refers to a protein sequence or subsequence that performs as an enzyme having the ability to slide along the length of a nucleic acid molecule and chemically alter its structure repeatedly. A catalytic domain can include an entire enzyme, a subsequence thereof, or can include additional amino acid sequences that are not attached to the enzyme or subsequence as found in nature.
“Domain” refers to a unit of a protein or protein complex, comprising a polypeptide subsequence, a complete polypeptide sequence, or a plurality of polypeptide sequences where that unit has a defined function. The function is understood to be broadly defined and can be ligand binding, catalytic activity or can have a stabilizing effect on the structure of the protein.
“Efficiency” in the context of a nucleic acid modifying enzyme of this invention refers to the ability of the enzyme to perform its catalytic function under specific reaction conditions. Typically, “efficiency” as defined herein is indicated by the amount of modified bases generated by the modifying enzyme per binding to a nucleic acid.
“Enhances” in the context of an enzyme refers to improving the activity of the enzyme, i.e., increasing the amount of product per unit enzyme per unit tim

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid modifying enzymes does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid modifying enzymes, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid modifying enzymes will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3034752

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.