Nucleic acid encoding CD28

Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S069100, C435S252300, C435S320100

Reexamination Certificate

active

06218525

ABSTRACT:

BACKGROUND
A basic tool in the field of recombinant genetics is the conversion of poly(A)
+
mRNA to double-stranded (ds) cDNA, which then can be inserted into a cloning vector and expressed in an appropriate host cell. Molecular cloning methods for ds cDNA have been reviewed, for example, by Williams, “The Preparation and Screening of a cDNA Clone Bank,” in Williamson, ed.,
Genetic Engineering,
Vol. 1, p. 2, Academic Press, New York (1981); Maniatis, “Recombinant DNA”, in Prescott, ed.,
Cell Biology
, Academic Press, New York (1980); and Efstratiadis et al., “Cloning of Double-Stranded DNA,” in Stelo et al.,
Genetic Engineering
, Vol. 1, p. 15, Plenum Press, New York (1979).
A substantial number of variables affect the successful cloning of a particular gene and CDNA cloning strategy thus must be chosen with care. A method common to many cDNA cloning strategies involves the construction of a “cDNA library” which is a collection of cDNA clones derived from the total poly(A)
+
mRNA derived from a cell of the organism of interest.
A mammalian cell may contain up to 30,000 different MRNA sequences, and the number of clones required to obtain low-abundance mRNAs, for example, may be much greater. Methods of constructing genomic eukaryotic DNA libraries in different expression vectors, including bacteriophage lambda, cosmids, and viral vectors, are known. Some commonly used methods are described, for example, in Maniatis et al.,
Molecular Cloning: A Laboratory Manual
, Cold Spring Harbor Laboratory, publisher, Cold Spring Harbor, New York (1982).
Once a genomic cDNA library has been constructed, it is necessary to isolate from the thousands of host cells the cell containing the particular human gene of interest. Many different methods of isolating target genes from cDNA libraries have been utilized, with varying success. These include, for example, the use of nucleic acid probes, which are labeled mRNA fragments having nucleic acid sequences complementary to the DNA sequence of the target gene. When this method is applied to cDNA clones of abundant mRNAs in transformed bacterial hosts, colonies hybridizing strongly to the probe are likely to contain the target DNA sequences. The identity of the clone then may be proven, for example, by in situ hybridization/selection (Goldberg et al.,
Methods Enzymol.,
68:206 (1979)) hybrid-arrested translation (Paterson et al.,
Proceedings of the National Academy of Sciences,
74:4370 (1977)), or direct DNA sequencing (Maxam and Gilbert,
Proceedings of the National Academy of Sciences,
74:560 (1977); Maat and Smith,
Nucleic Acids Res.,
5:4537 (1978)).
Such methods, however, have major drawbacks when the object is to clone mRNAs of relatively low abundance from cDNA libraries. For example, using direct in situ colony hybridization, it is very difficult to detect clones containing cDNA complementary to mRNA species present in the initial library population at less than one part in 200. As a result, various methods for enriching mRNA in the total population (e.g. size fractionation, use of synthetic oligodeoxynucleotides, differential hybridization, or immunopurification) have been developed and are often used when low abundance mRNAs are cloned. Such methods are described, for example, in Maniatis et al.,
Molecular Cloning: A Laboratory Manual
, supra.
Many functional eukaryotic proteins initially exist in the form of precursor molecules which contain leader or signal sequences at their N-terminal ends. These leader sequences bind to the cell membrane and draw the remainder of the protein through the lipid bilayer, after which the signal sequence is cleaved from the protein by a signal peptidase enzyme. The protein thus functions only after secretion from the cells (for example, insulin, serum albumin, antibodies, and digestive tract enzymes), or after the proteins have been anchored to the outer surface of a cell membrane (for example, histocompatibility antigens).
The cell surface antigens characteristic of mammalian T lymphocytes are additional examples of proteins that anchor to the cell surface. In mammals, certain cells derived from bone marrow mature into lymphocytes, which are present in the lymphoid organs, including the thymus, spleen, lymph nodes, and lymphoid aggregates, and also circulate actively through the blood and lymph systems. Mature lymphocyte cells may be divided into two populations: thymus-dependent (T) lymphocytes and thymus-independent (B) lymphocytes. T lymphocytes migrate to the interior of the thymus, where they undergo differentiative proliferation. During their differentiation process, they express characteristic cell surface membrane alloantigens, including Thy-1, TLA, gv-1, Ly-1, Ly-2, Ly-3, and Ly-5. As they mature, T lymphocytes lose the TLA antigens and some of the Thy-1 antigens, and gain histocompatibility antigens, acquiring the membrane conformation typical of the recirculating T lymphocytes. This is described, for example, by Mota, “Activity of Immune Cells,” in Bier et al., eds.,
Fundamentals of Immunology,
2d Ed., Springer-Verlag, Berlin, pp. 35-62 (1986).
T lymphocytes are involved indirectly in the formation of antibodies and their activities thus have required complex analysis of cell function, rather than simple antibody titer measurement. Partly due to this, their importance in development of immunologic competence was not recognized until relatively recently. Mature T lymphocytes synthesize and express an unique pattern of surface glycoprotein antigens which serve as markers for identification of different T lymphocyte subpopulations, including T helper cells, T suppressor cells, and T cytotoxic cells. Each of these subpopulations plays a very important role in regulating the immune system. (Mota, supra).
In humans, the functional and phenotypic heterogeneity of T lymphocytes is well accepted. Two major subpopulations are known: effector T cells mediating cellular immunity; and regulator T cells containing helper and suppressor T lymphocytes. These two subpopulations have been defined with heteroantisera, autoantibodies, and monoclonal antibodies directed at cell surface antigens. For example, earlier in their development, human lymphoid cells in the thymus express an antigen designated T11 which reacts strongly to a monoclonal antibody designated Cluster of Differentiation 2 (CD2), and react slightly with monoclonal antibody CD5 to cell surface antigen T1. During maturation, these cells lose T11 (CD2) and acquire three new antigens defined by monoclonal antibodies CD4, CD8, and CD1. With further maturation, the thymocytes cease to express cell surface antigens reactive with monoclonal antibody CD1, express the T3 antigen reactive with monoclonal antibody CD3, and then segregate into two subpopulations which express either T4 (CD4) or T8 (CD8) antigen. Immunologic competence is acquired at this stage, but is not completely developed until thymic lymphocytes migrate outside the thymus. (Mota, supra.) In contrast with the majority of thymocytes, circulating T lymphocytes express the T1 (CD5) and T3 (CD3) antigens. The T4 (CD4) antigen is present on approximately 55-65% of peripheral T lymphocytes, whereas the T8 (CD8) antigen is expressed on 20-30%. These two subpopulations correspond to helper and to suppressor and cytotoxic T cells, respectively.
In addition to providing a convenient means of distinguishing T lymphocyte subpopulations, these cell surface antigens are important for mature T cell activation and effector function. T cell activation involves a complex series of cell surface interactions between the T cell and the target cell or stimulator cell in addition to binding of the T cell receptor to its specific antigen.
For example, CD2, the human T cell erythrocyte receptor, allows thymocytes and T-lymphocytes to adhere to target cells (e.g., erythrocytes) and to thymic epithelium. This occurs via a specific molecular ligand for CD2, designated LFA-3, in humans, which is a widely distributed surface antigen. This phenomenon has long been employed to detect, assay and

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid encoding CD28 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid encoding CD28, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid encoding CD28 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2549025

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.