Multicellular living organisms and unmodified parts thereof and – Plant – seedling – plant seed – or plant part – per se – Higher plant – seedling – plant seed – or plant part
Reexamination Certificate
2000-11-15
2003-09-16
Nelson, Amy J. (Department: 1638)
Multicellular living organisms and unmodified parts thereof and
Plant, seedling, plant seed, or plant part, per se
Higher plant, seedling, plant seed, or plant part
C435S320100, C435S071100, C435S419000, C800S284000, C536S023200, C536S023600
Reexamination Certificate
active
06620987
ABSTRACT:
FIELD OF THE INVENTION
This invention is in the field of plant molecular biology. More specifically, this invention pertains to nucleic acid fragments encoding starch R1 phosphorylation proteins in plants and seeds.
BACKGROUND OF THE INVENTION
Starch is a mixture of two polysaccharides, amylose and amylopectin. Amylose is an unbranched chain of up to several thousand &agr;-D-glucopyranose units linked by &agr;-1,4 glycosidic bonds. Amylopectin is a highly branched molecule made up of up to 50,000 &agr;-D-glucopyranose residues linked by &agr;-1,4 and &agr;-1,6 glycosidic bonds. Approximately 5% of the glycosidic linkages in amylopectin are &agr;-1,6 bonds, which leads to the branched structure of the polymer.
Amylose and amylopectin molecules are organized into granules that are stored in plastids. The starch granules produced by most plants are 15-30% amylose and 70-85% amylopectin. The ratio of amylose to amylopectin and the degree of branching of amylopectin affects the physical and functional properties of the starch. Functional properties, such as viscosity and stability of a gelatinized starch determine the usefulness and hence the value of starches in food and industrial applications.
The R1 protein of potato appears to be a granule associated enzyme that is involved in starch phosphorylation (Lorberth, R. et al. (1998)
Nature Biotechnology
16:473-477). Nucleic acid fragments encoding starch R1 phosphorylation proteins have been isolated from other species, including rice (PCT International Application No. PCT/EP99/08506) and corn (Patent Application No. DE19653176-A1).
R1 activity has been associated with starch degradation in potato tubers. Studies have shown that inhibition of R1 activity leads to the synthesis of modified starch that is not degraded by enzymes present in potato tissue. If changes in starch degradation are a direct consequence of changes in the degree of phosphorylation this suggests that starch phosphorylation is an important modification that promotes degradation.
Accordingly, the availability of nucleic acid sequences encoding all or a portion of R1 proteins in other plants would facilitate studies to better understand starch degradation and provide genetic tools for the manipulation of starch modification, biosynthesis and metabolism in plant cells.
SUMMARY OF THE INVENTION
The present invention concerns an isolated polynucleotide comprising: (a) a first nucleotide sequence encoding a first polypeptide comprising at least 50 or 100 amino acids, wherein the amino acid sequence of the first polypeptide and the amino acid sequence of SEQ ID NO:6 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second nucleotide sequence encoding a second polypeptide comprising at least 100 amino acids, wherein the amino acid sequence of the second polypeptide and the amino acid sequence of SEQ ID NO:4, SEQ ID NO:8, or SEQ ID NO:14 have at least 90% or 95% identity based on the Clustal alignment method, (c) a third nucleotide sequence encoding a third polypeptide comprising at least 150 amino acids, wherein the amino acid sequence of the third polypeptide and the amino acid sequence of SEQ ID NO:2 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (d) a fourth nucleotide sequence encoding a fourth polypeptide comprising at least 150 amino acids, wherein the amino acid sequence of the fourth polypeptide and the amino acid sequence of SEQ ID NO:10 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (e) a fifth nucleotide sequence encoding a fifth polypeptide comprising at least 350 amino acids, wherein the amino acid sequence of the fifth polypeptide and the amino acid sequence of SEQ ID NO:12 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (f) a sixth nucleotide sequence encoding a sixth polypeptide comprising at least 600 amino acids, wherein the amino acid sequence of the sixth polypeptide and the amino acid sequence of SEQ ID NO:20 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (g) a seventh nucleotide sequence encoding a seventh polypeptide comprising at least 1337 amino acids, wherein the amino acid sequence of the seventh polypeptide and the amino acid sequence of SEQ ID NO:16 or SEQ ID NO:18 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, or (h) the complement of the first, second, third, fourth, fifth, sixth, or seventh nucleotide sequence, wherein the complement and the first, second, third, fourth, fifth, sixth, or seventh nucleotide sequence contain the same number of nucleotides and are 100% complementary. The first polypeptide preferably comprises the amino acid sequence of SEQ ID NO:6, the second polypeptide preferably comprises the amino acid sequence of SEQ ID NO:4, SEQ ID NO:8, or SEQ ID NO:14, the third polypeptide preferably comprises the amino acid sequence of SEQ ID NO:2, the fourth polypeptide preferably comprises the amino acid sequence of SEQ ID NO:10, the fifth polypeptide preferably comprises the amino acid sequence of SEQ ID NO:12, the sixth polypeptide preferably comprises the amino acid sequence of SEQ ID NO:20, and the seventh polypeptide preferably comprises the amino acid sequence of SEQ ID NO:16 or SEQ ID NO:18. The first nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:5, the second nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:3, SEQ ID NO:7, or SEQ ID NO:13, the third nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:1, the fourth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:9, the fifth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:11, the sixth nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:19, and the seventh nucleotide sequence preferably comprises the nucleotide sequence of SEQ ID NO:15 or SEQ ID NO:17. The first, second, third, fourth, fifth, sixth, and seventh polypeptides preferably are starch R1 phosphorylation proteins.
In a second embodiment, the present invention relates to a chimeric gene comprising any of the isolated polynucleotides of the present invention operably linked to a regulatory sequence.
In a third embodiment, the present invention relates to a vector comprising any of the isolated polynucleotides of the present invention.
In a fourth embodiment, the present invention relates to an isolated polynucleotide fragment comprising a nucleotide sequence comprised by any of the polynucleotides of the present invention, wherein the nucleotide sequence contains at least 30, 40, or 60 nucleotides.
In a fifth embodiment, the present invention relates to an isolated polypeptide comprising: (a) a first amino acid sequence comprising at least 50 or 100 amino acids, wherein the first amino acid sequence and the amino acid sequence of SEQ ID NO:6 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (b) a second amino acid sequence comprising at least 100 amino acids, wherein the second amino acid sequence and the amino acid sequence of SEQ ID NO:4, SEQ ID NO:8, or SEQ ID NO:14 have at least 90% or 95% identity based on the Clustal alignment method, (c) a third amino acid sequence comprising at least 150 amino acids, wherein the third amino acid sequence and the amino acid sequence of SEQ ID NO:2 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (d) a fourth amino acid sequence comprising at least 150 amino acids, wherein the fourth amino acid sequence and the amino acid sequence of SEQ ID NO:10 have at least 85%, 90%, or 95% identity based on the Clustal alignment method, (e) a fifth amino acid sequence comprising at least 350 amino acids, wherein the fifth amino acid sequence and the amino acid sequence of SEQ ID NO:12 have at least 80%, 85%, 90%, or 95% identity based on the Clustal alignment method, (f) a sixth amino acid sequence comprising at least 600 amino acids,
Allen Stephen M.
Broglie Karen E.
Butler Karlene H.
Cressman Robert F.
E. I. DuPont de Nemours & Company
Kubelik Anne
Nelson Amy J.
LandOfFree
Nucleic acid encoding a starch R1 phosphorylation protein... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nucleic acid encoding a starch R1 phosphorylation protein..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid encoding a starch R1 phosphorylation protein... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3021448