Nucleic acid based inhibition of CD40

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S320100, C435S325000, C435S375000, C435S366000, C536S023100, C536S063000

Reexamination Certificate

active

06194150

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to methods for the induction of graft tolerance, treatment of autoimmune diseases, inflammatory disorders and allergies in particular, by inhibition of B7-1, B7-2, B7-3 and CD40.
The following is a discussion of relevant art, none of which is admitted to be prior art to the present invention.
An adaptive immune response requires activation, clonal expansion, and differentiation of a class of cells termed T lymphocytes (T cells). T cell activation is a multi-step process requiring several signalling events between the T cell and an antigen presenting cell. The ensuing discussion details signals that are exchanged between T cells and antigen presenting B cells. Similar pathways are thought to occur between T cells and other antigen presenting cells such as monocytes or follicular dendritic cells.
T cell activation is initiated when the T-cell receptor (TCR) binds to a specific antigen that is associated with the MHC proteins on the surface of an antigen presenting cell. This primary stimulus activates the T cell and induces expression of CD40 ligand (CD40L) on the surface of the T cell. CD40L then interacts with its cognate receptor, CD40, which is constitutively expressed on the surface of B cells; CD40 transduces the signal leading to B cell activation. B cell activations result in the expression of B7-1, B7-2 and/or B7-3, which in turn interacts with constitutively expressed CD28 on the surface of T cells. The interaction generates a secondary co-stimulatory signal that is required to fully activate the T cell. Complete T cell activation via the T cell receptor and CD28 leads to cytokine secretion, clonal expansion, and differentiation. If the T cell receptor is engaged, absence of this secondary co-stimulus mediated by CD28, then the T cell is inactivated, either by clonal anergy (non-responsiveness or reduced reactivity of the immune system to specific antigen(s)) or clonal deletion (Jenkins et al., 1987
Proc. Natl. Acad. Sci. USA
84, 5409). Thus, engagement of the TCR without a concommitant costimulatory signal results in a state of tolerance toward the specific antigen recognized by the T cell. This co-stimulatory signal can be mediated by the binding of B7-1 or B7-2 or B7-3, present on activated antigen-presenting cells, to CD28, a receptor that is constitutively expressed on the surface of the T cell (Marshall et al., 1993
J Clin Immun
13, 165-174; Linsley, et al., 1991
J Exp Med
173, 721; Koulova et al., 1991
J Exp Med
173, 759; Harding et al., 1992
Nature
356, 607).
Several homologs of B7 (now known as B7-1; Cohen, 1993
Science
262, 844) are expressed in activated B cells (Freeman et al., 1993
Science
262, 907; Lenschowet al., 1993
Proc NatlAcad Sci USA
90, 11054; Azuma et al., 1993
Nature
366, 76; Hathcock et al., 1993
Science
262, 905; Freeman et al., 1993
Science
262, 909). B7-1 and B7-3 are only expressed on the surface of a subset of B cells after 48 hours of contact with T cells. In contrast, B7-2 mRNA is constitutively expressed by unstimulated B cells and increases 4-fold within 4 hours of activation (Freeman et al., 1993
Science
262, 909; Boussiotis et al., 1993
Proc Natl Acad Sci USA
90, 11059). Since T cells commit to either the anergy or the activation pathway within 12-24 hours of the initial TCR signal, it is thought that B7-2 is the molecule responsible for the primary costimulatory signal. B7-1 and B7-3 may provide a subsequent signal necessary for clonal expansion. Antibodies to B7-2 completely block T cell proliferation in a mixed lymphocyte reaction (Azuma et al., 1993 supra), supporting the central role of B7-2 in T cell activation. These experiments indicate that inhibition of B7-2 expression (for example with a ribozyme) would likely induce anergy. Similarly, inhibition of CD40 expression by a ribozyme would prevent B7-2 upregulation and could induce tolerance to specific antigens.
B7 (B7-1) is a 60 KD modified trans-membrane glycoprotein usually present on the surface of antigen presenting cells (APC). B7 has two ligands—CD28 and CTLA4. Interaction of B7-1 with CD28 and/or CTLA4 causes activation of T cell responses (Janeway and Bottomly, 1994
Cell
76, 275).
B7-2 is a 70 KD (34 KD unmodified) trans-membrane glycoprotein found on the surface of APCs. B7-2 encodes a 323 amino-acid protein which is 26% identical to human B7-1 protein. Like B7-1, CD28 and CTLA4 are selectively bound by B7-2. B7-2, unlike B7-1, is expressed on the surface of unstimulated B cells (Freeman et al., 1993 supra).
CD40 is a 45-50 KD surface glycoprotein found on the surface of late pre-B cells in bone marrow, mature B cells, bone marrow-derived dendritic cells and follicular dendritic cells (Clark and Ledbetter, 1994
Nature
367, 425).
Successful organ transplantation currently requires suppression of the reipient's immune system in order to prevent graft rejection and maintain good graft function. The available therapies, including cyclosporin A, FK506 and various monoclonal antibodies, all have serious side effects (Caine, 1992
Transplantation Proceedings
24,1260; Fuleihan et al., 1994
J. Clin. Invest
. 93, 1315; Van Gool et al., 1994
Blood
83, 176) . In addition, existing therapies result in general immune suppression, leaving the patient susceptible to a variety of opportunistic infections. The ability to induce a state of long-term, antigen-specific tolerance to the donor tissue would revolutionize the field of organ and tissue transplantation. Since organ graft rejection is mediated by T cell effector function, the goal is to block specifically the activation of the subset of T cells that recognize donor antigens. A limitation in the field of transplantation is the supply of donor organs (Nowak 1994
Science
266, 1148). The ability to induce donor-specific tolerance would substantially increase the chances of successful allographs, xenographs, thereby greatly increasing the donor pool.
Such transplantation includes grafting of tissues and/or organ ie., implantation or transplantation of tissue and/or organs, from the body of an individual to a different place within the same or different individual. Transplantation also involve grafting of tissues and/or organs from one area of the body to another. Transplantation of tissues and/or organs between genetically dissimilar animals of the same species is termed as allogeneic transplantation. Transplantation of animal organs into humans is termed xenotransplants (for a review see Nowak, 1994
Science
266, 1148).
One therapy currently being developed that has similar potential to induce antigen-specific tolerance is treatment with a CTLA4-lg fusion protein. “CTLA4” is a homologue of CD28 that binds B7-1 and B7-2 with high affinity. The engineered, soluble fusion protein, CTLA4-lg, binds B7-1, thereby blocking its interaction with CD28. The results of CTLA4-lg treatment in animal studies are mixed. CTLA4-lg treatment significantly enhanced survival rates and ameliorated the symptoms of graft-versus host disease in a murine bone marrow tranplant model (Blazer et al., 1994
Blood
83, 3815). CTLA4-lg induced long-term (>110 days) donor-specific tolerance in pancreatic islet xenographs (Lenschow et al., 1992
Science
257, 789). Conversely, in another study CTLA4-lg treatment delayed but did not ultimately prevent cardiac allograft rejection (Turka, et al., 1992
Proc Nati Acad Sci USA
89, 11102). Mice immunized with sheep erythrocytes in the presence of CTLA4-lg failed to mount a primary immune response (Linsley, et al., 1992
Science
257, 792). A secondary immunization did elicit some response, however, indicating incomplete tolerance. Interestingly, identical results were obtained when CTLA4-lg was administered 2 days after primary immunization, leading the authors to conclude that CTLA4-lg blocked amplification rather than initiation of the immune response. Since CTLA4-lg has been shown to dissociate more raoidly from B7-2 compared with B7-1, this may explain the failure to induce long term tolerance in this model (Linsley et a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid based inhibition of CD40 does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid based inhibition of CD40, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid based inhibition of CD40 will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2610535

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.