Nucleic acid amplification

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving nucleic acid

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S091200, C435S091520

Reexamination Certificate

active

06794141

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The technical field of this invention is enzymatic amplification of nucleic acids. More particularly, the invention provides methods, compositions and kits relating to amplifying (i.e., making multiple copies of) target polynucleotides to produce multiple copies thereof. The multiple copies may contain either the sense or antisense sequence of the amplified target polynucleotide. The invention also provides amplification of target polynucleotides, even if present in limited quantities, for use in subsequent analytical or preparative purposes.
BACKGROUND
Differential expression analysis of mRNA species in a test population requires the quantitative determination of different mRNA levels in the population. Although detection of a nucleic acid and its sequence analysis can be carried out by probe hybridization, the method generally lacks sensitivity when amounts of target nucleic acid in the test sample are low. Low copy number nucleic acid targets are difficult to detect even when using highly sensitive reporter groups like enzymes, fluorophores and radioisotopes. Detection of rare mRNA species is also complicated by factors such as heterogeneous cell populations, paucity of material, and the limits of detection of the assay method. Methods which amplify heterogeneous populations of mRNA also raise concerns with introduction of significant changes in the relative amounts of different mRNA species.
Applications of nucleic acid amplification method include detection of rare cells, pathogens, altered gene expression in malignancy, and the like. Nucleic acid amplification is potentially useful for both qualitative analysis, such as the detection of nucleic acids present in low levels, as well as the quantification of expressed genes. The latter is particularly useful for assessment of pathogenic sequences as well as for the determination of gene multiplication or deletion associated with malignant cell transformation. A number of methods for the amplification of nucleic acids have been described, e.g., exponential amplification, linked linear amplification, ligation-based amplification, and transcription-based amplification. An example of exponential nucleic acid amplification method is polymerase chain reaction (PCR) which has been disclosed in numerous publications. (see Mullis et al.
Cold Spring Harbor Symp. Quant. Biol.
51:263-273 (1986); PCR Cloning Protocols: From Molecular Cloning to Genetic Engineering, Methods in Molecular Biology, White, B. A., ed., vol. 67 (1998); Mullis EP 201,184; Mullis et al., U.S. Pat. Nos. 4,582,788 and 4,683,195; Erlich et al., EP 50,424, EP 84,796, EP 258,017, EP 237,362; and Saiki R. et al., U.S. Pat. No. 4,683,194). Linked linear amplification is disclosed by Wallace et al. in U.S. Pat. No. 6,027,923. Examples of ligation-based amplification are the ligation amplification reaction (LAR), disclosed by Wu et al. in
Genomics
4:560 (1989) and the ligase chain reaction, disclosed in EP Application No. 0320308 B1. Hampson et al. (Nucl. Acids Res. 24(23):4832-4835, 1996) describe a directional random oligonucleotide primed (DROP) method for use as part of global PCR amplification.
Isothermal target amplification methods include transcription-based amplification methods, in which an RNA polymerase promoter sequence is incorporated into primer extension products at an early stage of the amplification (WO 89/01050), and a target sequence or its complement is amplified by transcription and digestion of the RNA strand in a DNA/RNA hybrid intermediate. (See, for example, U.S. Pat. Nos. 5,169,766 and 4,786,600). These methods include transcription mediated amplification (TMA), self-sustained sequence replication (3SR), Nucleic Acid Sequence Based Amplification (NASBA), and variations thereof. (See Guatelli et al.
Proc. NatL Acad. Sci. U.S.A.
87:1874-1878 (1990); U.S. Pat. Nos. 5,766,849 (TMA); and 5,654,142 (NASBA)).
Some transcription-based amplification methods (Malek et al., U.S. Pat. No. 5,130,238; Kacian and Fultz, U.S. Pat. No. 5,399,491; Burg et al., U.S. Pat. No. 5,437,990) use primer-dependent nucleic acid synthesis to generate a DNA or RNA product, which serves as a template for additional rounds of primer-dependent nucleic acid synthesis. These methods use at least two primers each having sequences complementary to different strands of a target nucleic acid sequence and results in an exponential amplification of the number of copies of the target sequence. However, these methods are not amenable for global gene expression monitoring applications.
Amplification methods that utilize a single primer are also useful for amplification of heterogeneous mRNA populations. Since the vast majority of mRNAs comprise a homopolymer of 20-250 adenosine residues on their 3′ ends (the poly-A tail), poly-dT primers can be used for cDNA synthesis. “Single-primer amplification” protocols utilize a single primer containing an RNA polymerase promoter sequence and a sequence, such as oligo-dT, complementary to the 3′-end of the desired nucleic acid target sequence(s) (“promoter-primer”). (Kacian et al., U.S. Pat. No. 5,554,516; van Gelder et al., U.S. Pat. Nos. 5,545,522 ('522), 5,716,785 ('785) and 5,891,636 ('636)). These methods use, or could be adapted to use, a primer containing poly-dT for amplification of heterogeneous mRNA populations. In methods described in '522, '785 and '636, the promoter-primer is used to prime the synthesis of a first strand and an endogenously derived primer is used for second strand synthesis. The double-stranded cDNA thus generated includes a promoter coupled to a sequence corresponding to the target RNA and is used as a template for the synthesis of multiple copies of RNA complementary to the target sequence(s) (“antisense RNA”) by use of RNA polymerase. The method described in U.S. Pat. No. 5,716,785 has been used to amplify cellular mRNA for monitoring gene expression (e.g., van Gelder et al. (1990), Proc. Natl. Acad. Sci. USA 87, 1663; Lockhart et al. (1996), Nature Biotechnol. 14, 1675).
Another method to produce “antisense RNA” with an RNA polymerase is disclosed by Loewy (U.S. Pat. No. 5,914,229) where a single-stranded nucleic acid of interest is combined with an oligonucleotide containing a double stranded promoter and a single stranded segment complementary to the nucleic acid of interest. Eberwine (BioTechniques 20:584-591 (1996)) disclose yet another means to amplify mRNA and produce “antisense RNA” by using immobilized oligo(dT)-T7 primers to produce the necessary cDNA. Wang et al. (U.S. Pat. No. 5,932,541) disclose the use of a “captureable” primer to produce the first strand of a cDNA before it is immobilized on a solid support (via the “capturable primer) prior to the synthesis of the second cDNA strand.
Another in vitro transcription protocol is disclosed by Hughes et al. (Nature Biotech. 19:342-347, April 2001), where a two primer system (modified from U.S. Pat. No. 6,132,997) and an adapted PCR coupled system are used.
SUMMARY OF THE INVENTION
The present invention provides methods, compositions and kits relating to amplifying target polynucleotides and generating amplified RNA (aRNA). Optionally, each aRNA contains known, or “anchor”, sequences at the 5′ and/or 3′ ends. Anchor sequences may be used for the following: to generate sense amplified RNA and/or antisense amplified RNA (given RNAs that are flanked by T7 and T3 promoter sequences), to enhance second strand synthesis in the second round, and as primer sites for PCR amplification of normalized cDNA (see example 2 below). The aRNA may be in the form of either a “sense” RNA molecule containing all or part of the sequence found in the target polynucleotide, or an “antisense” RNA molecule containing a sequence complementary to all or part of the sequence found in the target polynucleotide, and may also include the optional anchor sequences.
In one aspect of the invention, a double stranded DNA molecule is produced to contain all or part of the sequence of the target polyn

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid amplification does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid amplification, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid amplification will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3241855

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.