Nuclear factors associated with transcriptional regulation

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S006120, C435S455000, C435S325000, C435S366000, C435S370000, C435S372000, C435S372200, C435S372300

Reexamination Certificate

active

06410516

ABSTRACT:

BACKGROUND OF THE INVENTION
Trans-acting factors that mediate B cell specific transcription of immunoglobulin (Ig) genes have been postulated based on an analysis of the expression of exogenously introduced Ig gene recombinants in lymphoid and non-lymphoid cells. Two B cell-specific, cis-acting transcriptional regulatory elements have been identified. One element is located in the intron between the variable and constant regions of both heavy and kappa light chain genes and acts as a transcriptional enhancer. The second element is found upstream of both heavy chain and kappa light chain gene promoters. This element directs lymphoid-specific transcription even in the presence of viral enhancers.
Mouse and human light chain promoters contain the octamer sequence ATTTGCAT approximately 70 base pairs upstream from the site of initiation. Heavy chain gene promoters contain the identical sequence in inverted orientation, ATGCAAAT, at the same position. This element appears to be required for the efficient utilization of Ig promoters in B cells. The high degree of sequence and positional conservation of this element as well as its apparent functional requirement suggests its interaction with a sequence-specific transcription factor but no such factor has been identified.
DISCLOSURE OF THE INVENTION
This invention pertains to human lymphoid-cell nuclear factors which bind to gene elements associated with regulation of the transcription of Ig genes and to methods for identification and for isolation of such factors. The factors are involved in the regulation of transcription of Ig genes. The invention also pertains to the nucleic acid encoding the regulatory factors, to methods of cloning factor-encoding genes and to methods of altering transcription of Ig genes in lymphoid cells or lymphoid derived cells, such as hybridoma cells, by transfecting or infecting cells with nucleic acid encoding the factors.
Four different factors which bind to transciptional regulatory DNA elements of Ig genes were identified and isolated in nuclear extracts of lymphoid cells. Two of the factors, IgNF-A and E, are constitutive; two IgNF-B and &kgr;-3 (hereinafter NF-&kgr;B) are lymphoid cell specific. Each factor is described below.
IgNF-A (NF-A1)
IgNF-A binds to DNA sequences in the upstream regions of both the murine heavy and kappa light chain gene promoters and also to the murine heavy chain gene enhancer. The binding is sequence specific and is probably mediated by a highly conserved sequence motif, ATTTGCAT, present in all three transcriptional elements. A factor with binding specificity similar to IgNF-A is also present in human HeLa cells indicating that IgNF-A may not be tissue specific.
E Factors
The E factors are expressed in all cell types and bind to the light and heavy chain enhancers.
IgNF-B (NF-A2)
IgNF-B exhibits the same sequence-specificity as IgNF-A; it binds to upstream regions of murine heavy and kappa light chain gene promoters and to murine heavy chain gene enhancer. This factor, however, is lymphoid specific; it is restricted to B and T cells.
NF-&kgr;B (Previously Kappa-3)
NF-&kgr;B binds exclusively to the kappa light chain gene enhancer (the sequence TGGGGATTCCCA). Initial work provided evidence that NF-kB is specific to B-lymphocytes (B-cells) and also to be B-cell stage specific. NF-kB was originally defected because it stimulates transcription of genes encoding kappa immunoglobulins in B lymphocytes. As described herein, it has subsequently been shown that transcription factor NF-kB, previously thought to be limited in its cellular distribution, is, in fact, present and inducible in many, if not all, cell types and that it acts as an intracellular messenger capable of playing a broad role in gene regulation as a mediator of inducible signal transduction. It has now been demonstrated that NF-kB has a central role in regulation of intercellular signals in many cell types. For example, NF-kB has not been shown to positively regulate the human &bgr;-interferon (&bgr;-IFN) gene in many, if not all, cell types. As described below, it is now clear not only that NF-kB is not tissue specific in nature, but also that in the wide number of types of cells in which it is present, it serves the important function of acting as an intracellular transducer of external influences. NF-kB has been shown to interact with a virus inducible element, called PRDII, in the &bgr;-IFN gene and to be highly induced by virus infection or treatment of cells with double-stranded RNA. In addition, NF-kB controls expression of the human immunodeficiency virus (HIV).
As further described, it has been shown that a precursor of NF-KB is present in a variety of cells, that the NF-KB precursor in cytosolic fractions is inhibited in its DNA binding activity and that inhibition can be removed by appropriate stimulation, which also results in translocation of NF-KB to the nucleus. A protein inhibitor of NF-KB, designated IkB, has been shown to be present in the cytosol and to convert NF-KB into an inactive form in a reversible, saturable and specific reaction. Release of active NF-kB from the IkB-NF-kB complex has been shown to result from stimulation of cells by a variety of agents, such as bacterial lipopolysaccharide, extracellular polypeptides and chemical agents, such as phorbel esters, which stimulate intracellular phosphokinases. IkB and NF-KB appear to be present in a stoichiometric complex and dissociation of the two complex components results in two events: activation (appearance of NF-KB binding activity) and translocation of NF-KB to the nucleus.
Identification and Isolation of the Transcriptional Regulatory Factors
The transcription regulatory factors of the present invention were identified and isolated by means of a modified DNA binding assay. The assay has general applicability for analysis of protein DNA interactions in eukaryotic cells. In performing the assay, DNA probes embodying the relevant DNA elements or segments thereof are incubated with cellular nuclear extracts. The incubation is performed under conditions which allows the formation of protein-DNA complexes. Protein-DNA complexes are resolved from uncomplexed DNA by electrophoresis through polyacrylamide gels in low ionic strength buffers. In order to minimize binding of protein in a sequence nonspecific fashion, a competitor DNA species can be added to the incubation mixture of the extract and DNA probe. In the present work with eukaryotic cells the addition of alternating copolymer duplex poly(dI-dC)-poly(dI-dC) as a competitor DNA species provided for an enhancement of sensitivity in the detection of specific protein-DNA complexes and facilitated detection of the regulatory factors described herein.
This invention pertains to the transcriptional regulatory factors, the genes encoding the four factors associated with transcriptional regulation, reagents (e.g., oligonucleotide probes, antibodies) which include or are reactive with the genes or the encoded factors and uses for the genes, factors and reagents. It further relates to NF-KB inhibitors, including isolated IkB, the gene encoding IkB and agents or drugs which enhance or block the activity of NF-KB or of the NF-KB inhibitor (e.g., IkB).
The invention also pertains to a method of cloning DNA encoding the transcriptional regulatory factors or other related transcriptional regulatory factors. The method involves screening for expression of the part of the binding protein with binding-site DNA probes. Identification and cloning of the genes can also be accomplished by conventional techniques. For example, the desired factor can be purified from crude cellular nuclear extracts. A portion of the protein can then be sequenced and with the sequence information, oligonucleotide probes can be constructed and used to identify the gene coding the factor in a cDNA library. Alternatively, the polymerase chain reaction (PCR) can be used to identify genes encoding transcriptional regulatory factors.
The present invention further relates to a method of inducing expression of a gene in a cell. In

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nuclear factors associated with transcriptional regulation does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nuclear factors associated with transcriptional regulation, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nuclear factors associated with transcriptional regulation will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2931753

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.