Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices
Reexamination Certificate
2001-03-02
2003-02-11
Schuberg, Darren (Department: 2835)
Electricity: electrical systems and devices
Housing or mounting assemblies with diverse electrical...
For electronic systems and devices
C361S704000, C165S080400, C174S015100
Reexamination Certificate
active
06519147
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a cooling art and an information processing apparatus. More particularly, the present invention relates to an art that is effective when applied to a cooling art, etc. for space-saving type personal computers, etc.
A conventional art of a cooling system for electronic apparatuses is one to thermally connect a heat generation member in an electronic apparatus with a wall of a metal housing by interposing a metal plate or a heat pipe between the heat generation member and the wall of the metal housing. Consequently, the heat generated from the heat generation member is radiated from the wall of the metal housing.
JP-A-7-142886 specification discloses an art for liquid-cooling a heat generation member of an electronic apparatus. According to the disclosed art, the heat generated from a heat generation member of a semiconductor element in the electronic apparatus is received by a heat receiving head, then cooling liquid in the heat receiving head is transferred to a heat radiating head provided at a metal housing of a display device through a flexible tube. Consequently, the heat generated from the heat generation member of the semiconductor element is radiated to the metal housing effectively from the heat radiating head via the cooling liquid. The specification also discloses another art that uses a heat pipe as the heat transfer device described above. According to this art, the heat generated from the semiconductor element is transferred to one end of the heat pipe via a metal heat receiving plate, then released from the other end of the heat pipe, attached directly to a wall surface of the metal housing, which functions as a heat radiating surface.
There is another conventional art disclosed for a cooling system of a notebook personal computer comprising a body part having such electronic circuits as a keyboard, a CPU and a display part having a liquid crystal display device. According to the conventional art, a heat receiving head receives the heat generated from the CPU and a heat radiating head radiates the heat via cooling liquid (that functions as a heat transfer medium) filled in a silicon-made flexible tube connected to the heat receiving head. The flexible tube is led to the heat radiating head provided at the display part so as to form a circulating flow path of the cooling liquid. A cooling system with a heat receiving head receiving the heat generated from the CPU and a heat radiating head radiating the heat transferred is disclosed.
Concretely, each of the above known arts is a local heat radiating structure by means of a heat radiating head.
A notebook personal computer, which generates a heat from the CPU built in the body part, has a problem that the heat generated from the CPU makes circuit operations unstable. Sometimes, the heat might thermally deform the built-in mechanisms. Especially in recent years, in accompanied with even higher operation frequency of the CPU, an amount of heat generation largely increases. It has been desired to efficiently radiate the largely increased heat outside.
The conventional arts described above have disclosed cooling methods that use a cooling liquid, a heat pipe, etc. respectively for general electronic apparatuses. However, it is a true that, for cooling art of notebook personal computers, only a cooling system has been disclosed in which a heat receiving head collects generated heat and a heat radiating head on the display part locally radiates the heat.
With regard to the largely increased heat generation amount in notebook personal computers, it can be considered to cope with it to provide a fan in the vicinity of the CPU to increase an air blow amount of the fan. This, however, arises other problems that wind sound of the fan becomes a noise and vibration is resulted to cause a problem on usage of the personal computer. Alternatively, it can be considered to enlarge the size of an air cooling heat sink (a heat radiation plate) for heat radiation at the heat generation member such as CPU to enlarge heat radiation capacity. However, this is also incompatible with the demand of notebook computers for down-sizing.
Furthermore, the operation clock speed has been improved for chip sets and display controllers so as to improve the display and memory access performances. As for the HDD, the spindle rotation speed has been improved so as to improve the disk access performance. And, electronic parts have been highly integrated for higher packing density.
SUMMARY OF THE INVENTION
As described above, an amount of heat generation at parts other than the CPU is in the tendency toward increment and cooling has become necessary at a plurality of heat generation parts in the notebook personal computer. It is an object of the present invention to provide a liquid-cooling art that is useful to be employed for notebook personal computers and to propose a structure for providing a specific heat radiation effect which is not provided by the conventional arts. Therefore, in the present invention, the following structures are mainly employed.
A notebook personal computer of the present invention, comprises: a body part including a CPU and a chip set that are mounted on a mother board respectively and an HDD; and a display part rotatably supported by the body part, wherein a heat receiving head is fixed to at least one heat generation part including the CPU, and a tube filled with cooling liquid is connected to the heat receiving head, and the tube is then laid in a meandering or zigzag pattern between a liquid crystal panel of the display part and a housing of the display part, and the heat generated from the heat generation part is absorbed at a part of the tube and radiated from another part of the tube by using the cooling liquid circulating in the tube as a heat transfer medium.
A notebook personal computer of the present invention, comprises: a body part including a CPU and a chip set that are mounted on a mother board respectively and an HDD; and a display part rotatably supported by the body part, wherein a heat receiving head is fixed to at least one heat generation part including the CPU, and a tube filled with cooling liquid is connected to the heat receiving head, and the tube connected to the heat receiving head is arranged in series on at least one heat generation part including the chip set to collect the heat from the respective heat generation parts, and the tube is then laid in a meandering or zigzag pattern between a liquid crystal panel of the display part and a housing of the display part, and the heat generated from the heat generation part is absorbed at a part of the tube and radiated from another part of the.tube by using the cooling liquid circulating in the tube as a heat transfer medium.
A liquid-cooling system for a notebook personal computer of the present invention, comprises: a body part including a CPU and a chip set that are mounted on a mother board respectively and an HDD; and a display part rotatably supported by the body part, wherein a heat receiving head is fixed to at least one heat generation part including the CPU, and a tube filled with cooling liquid is connected into the heat receiving head from a side surface of the head and is extended out of the heat receiving head from an opposite side surface of the head, and the tube is then led through left and right hinges between a liquid crystal panel of the display part and a housing of the display part and is laid in a meandering or zigzag pattern, and the heat generated from the heat generation part is absorbed at a part of the tube and radiated from another part of the tube by using the cooling liquid circulating in the tube as a heat transfer medium.
REFERENCES:
patent: 5606341 (1997-02-01), Aguilera
patent: 5885727 (1999-03-01), Kawatsu
patent: 6214227 (2001-04-01), Park et al.
patent: 6226178 (2001-05-01), Broder et al.
patent: 6313990 (2001-11-01), Cheon
patent: 7-142886 (1995-06-01), None
Arakawa Katsuhiro
Eishima Masaaki
Matsuoka Tatsuhiko
Matsushita Shinji
Nagashima Kenichi
Duong Hung Van
Schuberg Darren
LandOfFree
Notebook computer having a liquid cooling device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Notebook computer having a liquid cooling device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Notebook computer having a liquid cooling device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3149367