Static information storage and retrieval – Addressing – Plural blocks or banks
Reexamination Certificate
2002-05-24
2003-11-18
Lebentritt, Michael S. (Department: 2824)
Static information storage and retrieval
Addressing
Plural blocks or banks
C365S185050, C365S185160, C365S185140
Reexamination Certificate
active
06650591
ABSTRACT:
Japanese Patent Application No. 2001-165449, filed on May 31, 2001, is hereby incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION
The present invention relates to a nonvolatile semiconductor memory device including memory cells, each having two nonvolatile memory elements controlled by one word gate and two control gates.
As one type of nonvolatile semiconductor memory device, a MONOS (Metal-Oxide-Nitride-Oxide-Semiconductor or Metal-Oxide-Nitride-Oxide-Substrate) device is known. In the MONOS nonvolatile semiconductor memory device, a gate insulating layer between a channel and a gate is formed of a laminate consisting of a silicon oxide film, silicon nitride film, and silicon oxide film. Charges are trapped in the silicon nitride film.
The MONOS nonvolatile semiconductor memory device is disclosed in literature (Y. Hayashi, et al., 2000 Symposium on VLSI Technology Digest of Technical Papers, pp. 122-123). This literature discloses a twin MONOS flash memory cell including two nonvolatile memory elements (MONOS memory cells) controlled by one word gate and two control gates. Specifically, one flash memory cell has two charge trap sites.
In order to drive the twin MONOS flash memory cell, two bit lines, one word line, and two control gate lines are necessary.
Of these interconnects, two bit lines and two control gate lines are generally wired in the column direction. However, it is difficult to provide four interconnects (two bit lines and two control gate lines) within the width of a plurality of memory cells in one column using the same metal interconnect layer even in the case of using a photolithographic process with a minimum line & space width.
Therefore, the wiring space must be secured by increasing the width of the memory cells in one column. However, this causes a decrease in the degree of integration of the memory cells, whereby it is impossible to deal with a recent increase in the capacity of the nonvolatile semiconductor memory device.
BRIEF SUMMARY OF THE INVENTION
The present invention may provide a highly integrated nonvolatile semiconductor memory device in which one memory cell has two trap sites.
The present invention may also provide a nonvolatile semiconductor memory device capable of securing the degree of margin and freedom relating to the arrangement of interconnects by decreasing the number of interconnects for supplying electric power to control gates.
Further, the present invention may provide a nonvolatile semiconductor memory device capable of securing the degree of margin and freedom relating to the arrangement of interconnects for the control gates and bit lines.
A nonvolatile semiconductor memory device according to one aspect of the present invention comprises a memory cell array region in which a plurality of memory cells are arranged in first and second directions intersecting each other, each of the memory cells having two nonvolatile memory elements and being controlled by one word gate and two control gates. The memory cell array region includes a plurality of control gate lines formed by connecting, in the first direction, each of the control gates of the memory cells in each column arranged in the first direction, and sub control gate lines extending in the first direction in an upper layer of the plurality of control gate lines, the number of sub control gate lines being half the number of control gate lines. Each two control gate lines adjacent across the boundaries between the plurality of memory cells in the second direction are connected in common with one sub control gate line.
In this aspect of the present invention, the number of the sub control gates can be decreased to approximately half the number of the control gates. This produces a surplus of space for interconnects in a layer in which the sub control gate lines are disposed, whereby the degree of freedom for the interconnects can be increased.
Therefore, there is no need to decrease the degree of integration in order to secure space for metal interconnects even if one memory cell has two trap sites, whereby a highly integrated nonvolatile semiconductor memory device can be provided.
The nonvolatile semiconductor memory device may further comprise a select region disposed adjacent to the memory cell array region in the first direction, and a plurality of main control gate lines extending in the first direction within the select region and the memory cell array region, the number of the main control gate lines being smaller than the number of the sub control gate lines. This select region may have at least one sub control gate select circuit which selectively connects the sub control gate lines with the main control gate lines.
Since this enables the number of the main control gate lines to be smaller than the number of the sub control gate lines, a surplus of space for interconnects is produced in a layer in which the main control gate lines are disposed, whereby the degree of freedom for interconnects can be increased.
The select region may include first and second select regions disposed on both sides of the memory cell array region in the first direction. In this case, a first sub control gate select circuit which selectively connects one of an odd-numbered sub control gate line and an even-numbered sub control gate line with the plurality of main control gate lines may be provided in the first select region. A second sub control gate select circuit which selectively connects the other one of the odd-numbered sub control gate line and the even-numbered sub control gate line with the plurality of main control gate lines may be provided in the second select region.
The degree of freedom for interconnects of the sub control gate lines is further increased by dividing the select region, to which the plurality of sub control gate lines extends, in two.
In a nonvolatile semiconductor memory device according to another aspect of the present invention, the memory cell array region comprises sub control gate lines extending in the first direction in an upper layer of the plurality of control gate lines, the number of sub control gate lines being the same as the number of bit lines, and a plurality of word lines extending in the second direction. In this case, each two control gate lines adjacent across the boundaries between the plurality of memory cells in the second direction are connected in common with one sub control gate line.
According to this aspect of the present invention, the number of the sub control gate lines is the same as the number of the bit lines. Therefore, the width of the line and space can be designed in common between a layer in which the bit lines are formed and a layer in which the sub control gate lines are formed.
Each two control gate lines, disposed on both sides of an even-numbered sub bit line, may be connected in common with an even-numbered sub control gate line. Each two control gate lines, disposed on both sides of an odd-numbered sub bit line, may be connected in common with an odd-numbered sub control gate line.
Each of the bit lines may be divided into a plurality of bit split lines in the first direction by a discontinuous region. In this case, a plurality of sub bit lines connected respectively with the plurality of bit split lines which form one bit line may be provided. With this configuration, the bit lines divided in the first direction can be backed with the sub bit lines.
The nonvolatile semiconductor memory device may further comprise first and second select regions formed on both sides of the memory cell array region in the first direction, a plurality of main control gate lines extending in the first direction within the first and second select regions and the memory cell array region, the number of the main control gate lines being smaller than the number of the sub control gate lines, and a plurality of main bit lines extending in the first direction within the first and second select regions and the memory cell array region, the number of the main bit lines being smaller than the number of the sub bit lines
Hur Jung H.
Lebentritt Michael S.
Oliff & Berridg,e PLC
Seiko Epson Corporation
LandOfFree
Nonvolatile semiconductor memory device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Nonvolatile semiconductor memory device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonvolatile semiconductor memory device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3178313