Nonrecoil hammer

Tools – Hammer – Having shock absorbing means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C030S308100

Reexamination Certificate

active

06234048

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates generally to improvements in impact type hand tools such as hammers and mallets and the like, and to related processes for manufacturing such hand tools. More particularly, this invention relates to an improved hammer of the type having a tool head of hardened steel or the like, such as a carpenter's framing hammer, wherein the tool head contains a movable filler material to provide the hammer with nonrecoil or deadblow characteristics during normal use.
Hammers of the type have a tool head defining one or more metal impact members are well known in the art, for use in striking a target or work surface. In this regard, such hammers are available in a broad range of tool head sizes, shapes and weights in accordance with the particular task or tasks to be performed, such as driving nails or breaking concrete. Since marking or other damage to the target surface is frequently not an issue, the tool head is commonly constructed from a tough grade and preferably hardened steel to provide durable impact members for extended service life. One example of such hammers comprises a conventional carpenter's framing hammer having a hardened steel tool head with a central aperture or eyehole for assembly with a tool handle, wherein the tool head defines an impact member and a nail removal claw at opposite ends thereof. The tool head of such framing hammer is used for a variety of tasks, including driving nails, removal of nails, and other prying and wedging functions.
One problem encountered with traditional hammers of the type having a metal tool head relates to hammer rebound or recoil from a target surface after striking an impact blow. More specifically, when the hammer is swung by a worker to strike a target surface, most of the kinetic energy is transmitted from the impact member of the hammer to the target surface at the moment of impact. However, a portion of this kinetic energy is not transmitted to the target surface, but instead causes the hard-faced tool head to rebound or recoil from the target surface. This rebound effect thus prevents complete or substantially complete energy transfer to the target surface, thereby typically requiring an increased number of impact blows to perform a given task, e.g., driving a nail. Alternately, this rebound effect requires the worker to swing the hammer with an increased force, or to use a hammer with a heavier tool head, in order to complete a task with a reduced number of impact blows. Moreover, the worker must maintain a grasp of the hammer following an impact blow with sufficient strength to resist rebound forces in order to prevent loss of control. All of these factors undesirably increase the degree of strength and skill required for proper and safe hammer usage.
Nonrecoil or so-called deadblow hammers have been developed in an attempt to reduce or eliminate rebound of the tool head from a target surface following an impact blow. Such nonrecoil or deadblow hammers typically have a tool head defined by a hollow core canister filled partially with a relatively high mass and flowable filler material such as steel shot pellets, steel pins, or the like. In many designs, the hollow canister is protectively encased in whole or in part within a molded jacket or cladding constructed from a selected tough and durable thermoplastic material such as nylon. In use, when the tool head is impacted with a target surface, the filler material shifts and slides about within the hollow canister to absorb and dissipate the impact force in a manner which effectively counteracts any resultant rebound force. As a result, a greater proportion of the kinetic energy is transmitted from the tool head to the target surface in the course of each blow, to permit performance of a given task in a reduced number of blows, or alternately to permit use of a hammer having a lighter tool head. In addition, less strength and skill are required to control the hammer following each blow. For examples, of such nonrecoil impact tools, see U.S. Pat. Nos. 5,262,113 and 5,375,486. However, nonrecoil hammers have generally been limited to mallets and the like having relatively soft impact faces designed to avoid marking or damage to the target surface, or alternately to include metal-faced caps designed to mount upon a tool head formed primarily from relatively soft or nonmetallic materials. Such hammers have generally been ill-suited for use, for example, in a typical carpentry or framing environment wherein a hardened steel tool head is desired.
The present invention relates to an improved hammer or other striking tool of the type having a rigid tool head of hardened steel or the like to define at least one hard-faced impact member, wherein the tool head contains a flowable or movable filler material of relatively high mass to provide the hammer with substantial nonrecoil characteristics following an impact blow to a target surface.
SUMMARY OF THE INVENTION
In accordance with the invention, an improved nonrecoil or deadblow hammer and related production method are provided, wherein a tool head of hardened steel or the like is formed with a hollow socket containing a movable and relatively high mass filler material adapted to absorb or dissipate shock forces and thereby substantially reduce or eliminate rebound when an impact blow is struck by the hammer. The tool head comprises a central body having at least one impact member formed thereon for striking a target surface, wherein the central body has the hollow socket formed therein for seated reception of a hollow canister containing the movable filler material, such as a flowable filler material in the form of small steel pellets. The canister may be preassembled with a tool handle which extends downwardly from the tool head through a handle port formed at the base or lower end of the socket.
More specifically, in accordance with a preferred form of the invention, the tool head formed from hardened steel or the like defines the hollow socket which opens upwardly for nested and substantially seated reception of the hollow canister containing the movable filler material. The canister defines an opposing pair of end faces seated respectively in substantial abutting relation with a matingly shaped pair of end walls lining the opposite ends of the socket. These end walls within the socket are formed respectively at the inboard sides of front and rear tool work members, such as a front impact member and a cleft-shaped rear nail removal claw in the case of a carpenter's framing hammer.
The canister is preferably preassembled with a tool handle which in one form may be constructed as a fiberglass pultrusion and then assembled with the canister as by encasing all or part of the canister and handle within a suitable thermoplastic molded cladding. Such hollow canister preassembled with a tool handle is shown and described, for example, in U.S. Pat. Nos. 5,262,113 and 5,375,486, which are incorporated by reference herein. The canister is partially filled with the movable filler material, and seated within the upwardly open socket formed in the tool head. In this position, the tool handle extends downwardly from the tool head through the handle port formed in the base or lower end of the socket. Lock means such as a cap plate may be attached to the tool head for enclosing and retaining the canister within the socket. In one preferred form, the movable filler material comprises a flowable material such as a quantity of small steel shot pellets or the like.
In use, upon swinging of the hammer to strike one of the took work members such as the front impact member against a target surface, the movable filler material within the canister shifts in the direction of the impact blow to absorb and dissipate shock forces in a manner which focuses the impact energy upon the target surface while reducing or eliminating any significant rebound. In this regard, the canister containing the filler material is tightly constrained within its opposite end faces seated against the inboard end wal

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nonrecoil hammer does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nonrecoil hammer, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonrecoil hammer will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2438582

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.