Nonlinear resonance ejection from linear ion traps

Radiant energy – Ionic separation or analysis – Cyclically varying ion selecting field means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S282000

Reexamination Certificate

active

06831275

ABSTRACT:

FIELD OF INVENTION
The invention relates to the mass-selective radial or axial ejection of stored ions from linear ion traps.
BACKGROUND OF THE INVENTION
Linear quadrupole ion traps operate with an essentially quadrupolar radio-frequency field between four pole rods. The arrangement has been known since Wolfgang Paul; the basic principle is described in the same patent as the so-called “three-dimensional quadrupole ion traps” with ring and end caps (W. Paul and H. Steinwedel, DE 944 900; corresponding to U.S. Pat. No. 2,939,952). The basic arrangement which is often operated as a mass filter becomes a “linear ion trap” when rejecting fields are applied to the ends of the rod system, these being either DC voltage fields at the diaphragms or pseudo-potential fields as they appear in non-homogeneous radio-frequency fields. For example, pseudo-potential fields can be created by subsequent four-pole-rod systems Which are operated under different radio-frequency conditions.
(Comment on terminology: The term “linear ion trap” used here for rod systems has two meanings because a three-dimensional ion trap made up of ring and end-cap electrodes with an ideal quadrupole field is also termed “linear”. In an ideal three-dimensional quadrupole field, the radio-frequency field strength increases linearly both radially and axially, and the repulsing pseudo-forces also increase linearly. This produces a harmonic oscillator. In contrast, traps with superimposed hexapole and octopole fields do not display a linear increase in the fields and are therefore also called “nonlinear ion traps”. They form a non-harmonic oscillator and show the phenomenon called “nonlinear resonances”. The ion traps made up of four pole rods, which are referred to here as a “linear ion trap”, are sometimes called “two-dimensional traps” because the fields only change along two coordinates (x, y) and remain constant along the third coordinate (z). This explains the term “three-dimensional ion trap” for the trap with ring and endcaps, where the fields change in all three spatial coordinates. From the point of view of terminology, it would be better to make a distinction between “rod-system ion trap” and “ring-endcap system ion trap”, but the term “linear traps” is now widely in use in the literature.)
A linear ion trap, as defined here, is disclosed in U.S. Pat. No. 5,420,425 (M. B. Bier and J. E. Syka, corresponding to EP 0 684 628 A1), operating with mass-sequential, radial ion ejection after dipolar resonance excitement through a slit in one of the pole rods. The mass spectra are scanned using a detector attached to the outside (or even two detectors outside two slits in opposing pole rods). The system is filled by injecting the ions into the rod system along the axis. Practically all the ions injected can be captured and stored—whereas in the case of the three-dimensional ion traps, only a few percent of the ions injected can be captured and stored. The advantages of an ion trap such as this are, firstly, that the filling behavior of the system is more efficient and, secondly, the spatial charge has much less influence on the ejection behavior—higher filling levels can be therefore used without any reduction in resolution by space charge. In comparison to three-dimensional ion traps, where in most cases several spectra have to be added in order to produce a high quality spectrum which can be evaluated well, with linear traps, one spectrum is sufficient. The disadvantages are that the parallel adjustment of the pole rods must be extremely accurate (which is not usually the case for three-dimensional ion traps), the electronics are very complex, and the scanning rate for mass spectra is not very high, which largely cancels out the advantage of only needing one scan spectrum.
An article, by J. W. Hager, “A new linear ion trap mass spectrometer”, Rapid Commun. Mass Spectrom. 2002, 16, 512-526 disclosed a system using axial, mass-selective ejection of ions from a linear ion trap. In this case, use is made of the fact that, in the fringing field of the linear quadrupole field in front of a diaphragm on the exit side, the ions are not only able to oscillate radially but also axially. The axial oscillations are produced between the repelling DC potential of the diaphragm and the repelling pseudo-potential of the non-homogeneous fringing field within a small, flat potential well. These axial oscillations are now coupled with the radial oscillations due to the non-homogeneous shape of the potential surfaces in the fringing field; in other words, the two oscillation systems exchange energy. The energy passes from one oscillator system into the other and then back again. For example, if ions are excited to oscillate in the radial direction, they oscillate briefly in the radial direction, then oscillate briefly in the axial direction and then in the radial direction again, and so on. If the potential barrier at the front due to the diaphragms is not high, then radially excited ions will be able, during the first oscillation in the axial direction, to overcome this potential barrier and can be measured by a detector at the output. The oscillation can be excited by applying a radio-frequency voltage at one of the diaphragms. This is an excitation in the form of quadrupolar excitation.
The advantage of this method is again the efficient filling behavior of the linear ion trap by injecting ions from the end. The ejection yield is quoted to be 20%. That is significantly lower than for three-dimensional ion traps but, particularly with an improved filling rate of almost 100% and a somewhat larger storage, it is more than compensated for. However, the quantity of ions collected must not be as large as with the device for radial ejection described above if the ejection process is not to be inhibited by the spatial charge and, in particular, if the mass resolution is not to be reduced.
Around 1960, Wolfgang Paul and his then colleague, Friedrich von Busch, had already discovered the phenomenon of nonlinear resonances with quadrupole filters. Later, this phenomenon was mainly studied on three-dimensional quadrupole ion traps.
In three-dimensional quadrupole traps, where a radio frequency voltage is applied between the ring electrode and the two end-cap electrodes, ions can oscillate in an axial direction between the end caps and also in a radial direction parallel to the plane of the ring. The oscillations are sinusoidal with a mass-specific frequency of &ohgr;(m/z), and are called the fundamental oscillations or secular oscillations of the ions. On these slower sinusoidal oscillations are imposed the rapid oscillations &OHgr; of the driving frequency, which is electrically applied at the ring electrode. According to the laws of trigonometry for the multiplication of two sinusoidal functions of different frequency, the multiplicative superimposition of sinusoidal oscillations leads to side bands with the main components (&OHgr;−&ohgr;) and (&OHgr;+&ohgr;) which, in this case, will be called Mathieu side bands because they appear as the solutions to the Mathieu differential equations for ion movement in the ion traps. Weaker components are (2&OHgr;−&ohgr;) and (2&OHgr;+&ohgr;), in general (n&OHgr;−&ohgr;) and (n&OHgr;+&ohgr;).
If higher multipole fields are superimposed on the quadrupole field due to electrical or mechanical distortions, overtones of the fundamental oscillation are produced, as is generally known for distorted oscillators. If the distortions are symmetric, the overtones produced are 3&ohgr;, 5&ohgr; and 7&ohgr; and so on, where &ohgr; is the fundamental oscillation of the ions. Asymmetric distortions produce all overtones 2&ohgr;, 3&ohgr;, 4&ohgr;, 5&ohgr; and 6&ohgr; and so on. Asymmetric distortions are obtained by superimposing higher multipole fields with odd numbers of pole pairs (such as hexapole and decapole fields) and symmetric distortions are obtained by superimposing multipole fields with even numbers of pole pairs (such as octopole and dodecapole fields).
Nonlinear resonances ap

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nonlinear resonance ejection from linear ion traps does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nonlinear resonance ejection from linear ion traps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonlinear resonance ejection from linear ion traps will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3338054

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.