Noninvasive measurement of chemical substances

Surgery – Diagnostic testing – Eye or testing by visual stimulus

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06544193

ABSTRACT:

FIELD OF THE INVENTION
The present invention includes a contact device for mounting on a part of the body to measure bodily functions and to treat abnormal conditions indicated by the measurements.
BACKGROUND OF THE INVENTION
The present invention relates to a tonometer system for measuring intraocular pressure by accurately providing a predetermined amount of applanation to the cornea and detecting the amount of force required to achieve the predetermined amount of applanation. The system is also capable of measuring intraocular pressure by indenting the cornea using a predetermined force applied using an indenting element and detecting the distance the indenting element moves into the cornea when the predetermined force is applied, the distance being inversely proportional to intraocular pressure. The present invention also relates to a method of using the tonometer system to measure hydrodynamic characteristics of the eye, especially outflow facility.
The tonometer system of the present invention may also be used to measure hemodynamics of the eye, especially ocular blood flow and pressure in the eye's blood vessels. Additionally, the tonometer system of the present invention may be used to increase and measure the eye pressure and evaluate, at the same time, the ocular effects of the increased pressure.
Glaucoma is a leading cause of blindness worldwide and, although it is more common in adults over age 35, it can occur at any age. Glaucoma primarily arises when intraocular pressure increases to values which the eye cannot withstand.
The fluid responsible for pressure in the eye is the aqueous humor. It is a transparent fluid produced by the eye in the ciliary body and collected and drained by a series of channels (trabecular meshwork, Schlemm's canal and venous system). The basic disorder in most glaucoma patients is caused by an obstruction or interference that restricts the flow of aqueous humor out of the eye. Such an obstruction or interference prevents the aqueous humor from leaving the eye at a normal rate. This pathologic condition occurs long before there is a consequent rise in intraocular pressure. This increased resistance to outflow of aqueous humor is the major cause of increased intraocular pressure in glaucoma-stricken patients.
Increased pressure within the eye causes progressive damage to the optic nerve. As optic nerve damage occurs, characteristic defects in the visual field develop, which can lead to blindness if the disease remains undetected and untreated. Because of the insidious nature of glaucoma and the gradual and painless loss of vision associated therewith, glaucoma does not produce symptoms that would motivate an individual to seek help until relatively late in its course when irreversible damage has already occurred. As a result, millions of glaucoma victims are unaware that they have the disease and face eventual blindness. Glaucoma can be detected and evaluated by measuring the eye's fluid pressure using a tonometer and/or by measuring the eye fluid outflow facility. Currently, the most frequently used way of measuring facility of outflow is by doing indentation tonography. According to this technique, the capacity for flow is determined by placing a tonometer upon the eye. The weight of the instrument forces aqueous humor through the filtration system, and the rate at which the pressure in the eye declines with time is related to the ease with which the fluid leaves the eye.
Individuals at risk for glaucoma and individuals who will develop glaucoma generally have a decreased outflow facility. Thus, the measurement of the outflow facility provides information which can help to identify individuals who may develop glaucoma, and consequently will allow early evaluation and institution of therapy before any significant damage occurs.
The measurement of outflow facility is helpful in making therapeutic decisions and in evaluating changes that may occur with time, aging, surgery, or the use of medications to alter intraocular pressure. The determination of outflow facility is also an important research tool for the investigation of matters such as drug effects, the mechanism of action of various treatment modalities, assessment of the adequacy of antiglaucoma therapy, detection of wide diurnal swings in pressure and to study the pathophysiology of glaucoma.
There are several methods and devices available for measuring intraocular pressure, outflow facility, and/or various other glaucoma-related characteristics of the eye. The following patents disclose various examples of such conventional devices and methods:
PATENT NO.
PATENTEE
5,375,595
Sinha et al.
5,295,495
Maddess
5,251,627
Morris
5,217,015
Kaye et al.
5,183,044
Nishio et al.
5,179,953
Kursar
5,148,807
Hsu
5,109,852
Kaye et al.
5,165,409
Coan
5,076,274
Matsumoto
5,005,577
Frenkel
4,951,671
Coan
4,947,849
Takahaghi et al.
4,944,303
Katsuragi
4,922,913
Waters, Jr. et al.
4,860,755
Erath
4,771,792
Seale
4,628,938
Lee
4,305,399
Beale
3,724,263
Rose et al.
3,585,849
Grolman
3,545,260
Lichtenstein et al.
Still other examples of conventional devices and/or methods are disclosed in Morey, Contact Lens Tonometer, RCA Technical Notes, No. 602, December 1964; Russell & Bergmanson, Multiple Applications of the NCT: An Assessment of the Instrument's Effect on IOP, Ophthal. Physiol. Opt., Vol. 9, April 1989, pp. 212-214; Moses & Grodzki, The Pneumatonograph: A Laboratory Study, Arch. Ophthalmol., Vol. 97, March 1979, pp. 547-552; and C. C. Collins, Miniature Passive Pressure Transensor for Implanting in the Eye, IEEE Transactions on Bio-medical Engineering, April 1967, pp. 74-83.
In general, eye pressure is measured by depressing or flattening the surface of the eye, and then estimating the amount of force necessary to produce the given flattening or depression. Conventional tonometry techniques using the principle of applanation may provide accurate measurements of intraocular pressure, but are subject to many errors in the way they are currently being performed. In addition, the present devices either require professional assistance for their use or are too complicated, expensive or inaccurate for individuals to use at home. As a result, individuals must visit an eye care professional in order to check their eye pressure. The frequent self-checking of intraocular pressure is useful not only for monitoring therapy and self-checking for patients with glaucoma, but also for the early detection of rises in pressure in individuals without glaucoma and for whom the elevated pressure was not detected during their office visit.
Pathogens that cause severe eye infection and visual impairment such as herpes and adenovirus as well as the virus that causes AIDS can be found on the surface of the eye and in the tear film. These microorganisms can be transmitted from one patient to another through the tonometer tip or probe. Probe covers have been designed in order to prevent transmission of diseases but are not widely used because they are not practical and provide less accurate measurements. Tonometers which prevent the transmission of diseases, such as the “air-puff” type of tonometer also have been designed, but they are expensive and provide less accurate measurements. Any conventional direct contact tonometers can potentially transmit a variety of systemic and ocular diseases.
The two main techniques for the measurement of intraocular pressure require a force that flattens or a force that indents the eye, called “applanation” and “indentation” tonometry respectively.
Applanation tonometry is based on the Imbert-Fick principle. This principle states that for an ideal dry, thin walled sphere, the pressure inside the sphere equals the force necessary to flatten its surface divided by the area of flattening. P=F/A (where P=pressure, F=force, A=area). In applanation tonometry, the cornea is flattened, and by measuring the applanating force and knowing the area flattened, the intraocular pressure is determined.
By contrast, according to indentation tonometry (Schiot

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Noninvasive measurement of chemical substances does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Noninvasive measurement of chemical substances, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Noninvasive measurement of chemical substances will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3086082

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.