Noninvasive continuous blood pressure meter

Surgery – Truss – Pad

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

128667, 128677, A61B 502

Patent

active

044755546

DESCRIPTION:

BRIEF SUMMARY
TECHNICAL FIELD

This invention relates to an instrument for the noninvasive continuous measurement of arterial blood pressure in which the actual blood pressure waveform is reproduced. This is achieved by means of an inflatable flexible finger cuff which incorporates a photoelectric infrared transmitter and receiver, electronic circuitry connected to the transmitter and receiver and controlling an electro-pneumatic transducer which, in turn, is connected to the inflatable cuff by a flexible tube to which is also attached an electronic pressure transducer.


BACKGROUND ART

A similar instrument is known in accordance with the prior art portion of claim 1 (Czechoslovakian Pat. No. 133205).
However, the finger cuff used in that version of the instrument comprises a number of inflatable sacks in a rigid cylinder with light source and sensor mounted in the cylinder in such a way that the light must pass through the sacks as well as through the finger.
In accordance with the prior art, the idea of placing the photoelectric source-sensor pair directly against the skin, under the pressure cuff (made possible with the advent of miniature photoelectric sources and sensors), was put forward in 1975 by Reichenberger et al. (see Proceedings "Colloque International sur les Capteurs Biomedicaux", Paris, 1975, A7.5). Such a cuff was displayed in a demonstration of a valve and compressed air version of the instrument in Leiden, The Netherlands, in 1978 (Wesseling, K. H.: Niet invasieve vingerbloeddrukmeter, Boerhaave Lezingen, Wetenschappelijk rapport afd. Cardiologie, Academisch Ziekenhuis, Leiden, Oct. 6, 1978), and in Eindhoven, The Netherlands, in 1979 (Wesseling, K. H.: Bloeddrukmeting en een prototype vingerbloeddrukmeter, Colloquium Meten en Regelen, Technische Hogeschool Eindhoven, Afd. der Elektrotechniek en Technische Natuurkunde, June 8, 1979).
Such a cuff is virtually a miniaturized version of the conventional sphygmomanometer cuff, but incorporating an infrared light source and sensor. (Infrared light absorption is insensitive to blood oxygen changes or to changes in extravascular fluid volume resulting from the application of the cuff pressure to the finger.) Owing to the direct skin contact with the light source and sensor obtained in this type of cuff design, a much larger plethysmogram (the signal from the photoelectric sensor) can be obtained than with the original Czechoslovakian cuff design. Motion artifact is substantially reduced also as a result of this intimate contact with the finger plus the absence of the inertia (and thus motion relative to the finger) of a rigid cylinder. The cuff fits a large range of adult finger sizes (a smaller cuff is required for children). With this cuff design, the cuff air space is minimized, this being a major determinant of the size of the linear motor used in the present invention. The cuff length is determined by theoretical considerations of the longitudinal distribution of pressure transmitted from the cuff to the arterial wall, as well as, though to a lesser extent, the light source-sensor field pattern. A cuff length of minimally 4 cm allows accurate measurements to be obtained.
Moreover, in that earlier version (Czechoslovakian Pat. No. 133205) the electro-pneumatic transducer consists of an electrically controlled valve which controls the amount of compressed air shunted to the inflatable finger cuff or leaked off into the surrounding air. It has become apparent that this form of electro-pneumatic transducer represents a severely limiting factor in the operation of such an instrument, owing to the necessary presence of a flow constriction in the pneumatic circuit which thereby limits the speed at which the cuff can be inflated and thus the fastest component in the blood pressure that can be reliably tracked by the instrument. Such a restriction particularly degrades the performance of the instrument at higher heart rates and higher pulse pressures, besides severely limiting the maximum allowable length of flexible tubing connecting cuff and instrument thereb

REFERENCES:
patent: 4170226 (1979-10-01), Albainy et al.
patent: 4178918 (1979-12-01), Cornwell
patent: 4338950 (1982-07-01), Barlow, Jr. et al.
patent: 4343314 (1982-08-01), Sramek
Yamakoshi et al., "Indirect Measurement of Instantaneous Arterial BP in the Human Finger by the Vascular Unloading Technique"; IEEE Trans. on Biomed. Engr., vol. BME-27, No. 3, 3-1980, pp. 150-155.
Wesseling et al., "Implementation of the Penaz Method for Measuring Arterial BP in the Finger and First Results of an Evaluation; Inst. Med. Phys. TNO; Progress Report 6; 12-1978, pp. 168-173.
Penaz; "Photoelectric Measurement of BP, Volume, and Flow in the Finger"; DIG. of 10th Int'l Conf. on Med. and Biol. Engr., 1973, p. 104.
Kesteloot et al., "Methodology of BP Measurement and Epidemiology of Hypertension"; ACTA Cardiologica, T., XXXIII, 1978, 2, pp. 83-87.
Reichenberger et al., "New Optoelectronic System for Monitoring Peripheral Bloodflow"; Proceeding Biocapt., Paris 1975, pp. 253-258.
Francis, "Improved Systolic-Diastolic Pulse Separator"; Med. and Biol. Engr., 1-1974, pp. 105-108.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Noninvasive continuous blood pressure meter does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Noninvasive continuous blood pressure meter, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Noninvasive continuous blood pressure meter will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1595173

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.