Optical: systems and elements – Polarization without modulation – Polarization using a time invariant electric – magnetic – or...
Reexamination Certificate
2001-10-05
2004-06-29
Nguyen, Thong (Department: 2872)
Optical: systems and elements
Polarization without modulation
Polarization using a time invariant electric, magnetic, or...
C359S280000, C359S281000, C359S315000, C359S320000, C359S487030, C359S494010, C359S490020, C359S490020, C359S490020, C359S490020, C372S703000, C385S011000, C385S033000
Reexamination Certificate
active
06757101
ABSTRACT:
CROSS REFERENCE TO RELATED APPLICATION
Not Applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable
REFERENCE TO A MICROFICHE APPENDIX
Not Applicable
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention is related to optical devices; more particularly, the invention relates to non-mechanical optical switches.
2. Description of Related Art
Optical switch is a device for directing optical signals along selected fibers of an optical network, in which light signals are transmitted along optical fibers to transfer information from one location to another. The desirable optical switch performance include: high speed switching, none-blocking operation, low optical insertion loss, long operation lifetime, small size, and low cost. Optical switch is a key component in today's optical network, analogous to the electrical switches in electrical networks. However, it has not been widely adopted because the lack of reliability and the high cost associated with optical switches.
In an optical switch, light signal must be accurately entered into an optical fiber, or much of the signal strength will be lost. The alignment requirements of modern single mode optical fibers are particularly stringent, as their core diameters are typically as small as 2 to 10 micrometers and their acceptance angle is fairly narrow. Additional insertion losses reduce the amplitude of the optical signal. Therefore, optical switches which accept light from an input optical fiber, and which selectively couple that light to any of a plurality of output optical fibers must transfer that light with precise alignment and within the small acceptance angle for light to efficiently enter the fiber. Most prior art optical switches are based on mechanical movement to switch light beams, consequently have drawbacks of slow and less reliable. It is greatly desirable to have optical switches that direct light beams without moving parts, a feature generally associated with high reliability and high speed.
Many types of alternative none-mechanical optical switches have been developed for commercial applications, such as thermal heating, electro-optic phase retardation, and magneto-optic polarization rotator. These devices use various materials and configurations. Thermal heating based switches typically rely on long interaction planar waveguide construction (for example U.S. Pat. No. 5,892,863). This type of switch has a deficiency of large insertion loss due to fiber to planar waveguide coupling and poor isolation due to heat leak. On the other hand, micro-optic assembly generally provides low optical loss. Micro-optic switches of no-moving parts have been described in several patents, as referenced in this disclosure. However, due to their complex configurations, previous non-mechanical optical switches suffer from high insertion loss and high cost. Further, these switches often comprise many elements and require extremely stringent alignment that is unsuitable for low-cost manufacture. Therefore, non-mechanical optical switches have not been widely used in optical communications. Moreover, all known magneto-optic switch designs are limited to transmit light only in one direction. This deficiency hampers their applications in today's optical networks, which are often bi-directional.
An early concept of a magneto-optic crystal based optical switch for telecommunication use was disclosed by Jin, U.S. Pat. No. 5,627,924. In Jin's switch, the optical beams from the two ports on the same side propagate desirably parallel but with a relative large spatial location shift. Consequently, this design requires three individual imaging lenses, or three fiber collimators. A fiber collimator is a component consists a collimating lens packaged together with light guiding fibers. Because of the large beam separations between the two adjacent lenses, the design requires large and long crystals to deflect the beams. As a result, the optical device has excessively large size and is expensive to produce. The switch is also a single stage device, having low isolation.
A similar two stage optical switch was also disclosed by Wu, U.S. Pat. No. 5,724,165. Wu's switch is disadvantageously based a large spatial separation between two fibers location on the same side. Consequently, the configuration requires individual imaging lens for each fiber port and large and long crystals to deflect the beams. Therefore, the optical device typically has large loss, excessively large size, and is expensive to produce. Moreover, the use of liquid crystal materials leads to undesirable properties of slow speed and large temperature dependence.
Recent magneto-optic switch version as described by Shirasaki, U.S. Pat. No. 5,982,539 represents some improvement by using dual fiber sharing a single imaging lens to reduce the optical device size. However, Shirasaki's switch has a disadvantage that the beam propagations are no long parallel rather with an angle. Consequently the switch requires precise fabrication of complex polarization prisms and matching birefringent wedges. This switch also requires delicacy for maintaining accurate alignment of each optical path, in which the angular and the spatial positions are closely interrelated. Therefore, manufacturing of Shirasaki switch is difficult and consequently the production cost is very high. Shirasaki switch is also a non-reciprocal device, which is unsuitable for bi-directional communication applications.
Recent switches as described by Bergman, U.S. Pat. No. 5,923,472 and U.S. Pat. No. 6,173,092B1 and Robinson, U.S. Pat. No. 5,933,269 utilize mirrors to reflect the beam back to another port on the same side. With a long and fold beam propagation and an unsymmetrical geometry, the devices become less tolerance to both extremely small angle and position misalignment. This type of switch is therefore often very difficult and costly to make. Moreover, the design is a non-reciprocal device.
For the above reasons, what is needed is a system and method for providing non-mechanical optical switches that is amenable to low-cost volume production. It would be particularly desirable to provide optical switches having low optical insertion loss and high speed switching that is also reliable. Its is also important that these switches use less components of small size and require reduced alignment steps with large assembly tolerance to facilitate low cost manufacture. Bi-directional operation is also a desirable feature for many applications.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a compact and economical non-mechanical optical switch that can be efficiently coupled to optical fibers using fewer parts and having large assembly tolerance. The invention consists of optical switches having at least three ports for optical fibers. The inventive switches use at least one single lens to coupling two fibers achieving small beam separation thus small size and low material cost. The invention further consists of a light-bending device, situated to compensate for the angle between the two light beams that share the same lens, advantageously increasing alignment tolerance.
REFERENCES:
patent: 4355864 (1982-10-01), Soref
patent: 4969720 (1990-11-01), Lins
patent: 5402509 (1995-03-01), Fukushima
patent: 5627924 (1997-05-01), Jin et al.
patent: 5724165 (1998-03-01), Wu
patent: 5923472 (1999-07-01), Bergmann et al.
patent: 5930039 (1999-07-01), Li et al.
patent: 5933269 (1999-08-01), Robinson
patent: 5982539 (1999-11-01), Shirasaki et al.
patent: 6014244 (2000-01-01), Chang
patent: 6134031 (2000-10-01), Nishi et al.
patent: 6173092 (2001-01-01), Bergman
patent: 6577430 (2003-06-01), Jin et al.
patent: WO 200060405 (2000-10-01), None
Jin Guanghai
Zhao Jing
Agiltron, Inc.
Alboszta Marek
Curtis Craig
Jacobs Ron
Lumen IPS.
LandOfFree
None-mechanical dual stage optical switches does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with None-mechanical dual stage optical switches, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and None-mechanical dual stage optical switches will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3366177