Nonaqueous electrolyte for electrical storage devices

Compositions – Electrolytes for electrical devices

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

2521821, 429188, 429194, 429196, 544224, 544242, 544334, 544336, 546249, 546345, 548146, 548215, 5482622, 5483351, 5483431, 5483731, H01M 616, H01G 9022

Patent

active

059650540

ABSTRACT:
Improved nonaqueous electrolytes for application in electrical storage devices such as electrochemical capacitors or batteries are disclosed. The electrolytes of the invention contain salts consisting of alkyl substituted, cyclic delocalized aromatic cations, and their perfluoro derivatives, and certain polyatomic anions having a van der Waals volume less than or equal to 100 .ANG..sup.3, preferably inorganic perfluoride anions and most preferably PF.sub.6.sup.-, the salts being dissolved in organic liquids, and preferably alkyl carbonate solvents, or liquid sulfur dioxide or combinations thereof, at a concentration of greater than 0.5M and preferably greater than 1.0M. Exemplary electrolytes comprise 1-ethyl-3-methylimidazolium hexafluorophosphate dissolved in a cyclic or acylic alkyl carbonate, or methyl formate, or a combination therof. These improved electrolytes have useful characteristics such as higher conductivity, higher concentration, higher energy storage capabilities, and higher power characteristics compared to prior art electrolytes. Stacked capacitor cells using electrolytes of the invention permit high energy, high voltage storage.

REFERENCES:
McEwen et al., "Nonaqueous Electrolytes for Electrochemical Capacitors: Imidazolium Cations and Inorganic Fluorides with Organic Carbonates," J. Electrochem. Soc., vol. 144, No. 4, pp. L84-L86, Apr., 19.
Arbizzani et al., "Electronically Conducting Polymers and Activated Carbon: Electrode Materials in Supercapacitor Technology," Adv. Mater. vol.:8 No. 4, pp. 331-334 (1996).
Bonhote et al., "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts," Inorg. Chem. vol. 35: pp. 1168-1178 (1996).
Carlin et al., "Dual Intercalating Molten Electrolyte Batteries," J. Electrochem. Soc., vol. 141: No. 7, L73-L76 (1994).
Conway et al., "Characterization of Behavior and Mechanisms of Self-Discharge of Electrochemical Capacitors in Relation to that at Batteries," Proceedings of the Fifth International Seminar on Double Layer Capacitors and Similar Energy Devices, Florida Educational Seminars, Dec., 1995.
Conway et al., "The Electrolyte Factor in Supercapacitor Design and Performance: Conductivity, Ion-Pairing and Solvation," Proceedings of the Fourth International Seminar on Double Layer Capacitros and Similar Energy Storage Devices, Florida Educational Seminars, Dec., 1994.
Conway, B.E., in Electrochemical Capacitors, F.M. Delnick and M. Tomkiewicz, Editors, "Supercapacitor behavior resulting from pseudocapacitance associated with redox processes", PV95-29, p. 15, The Electrochemical Society Proceedings Series, Pennington, NJ (1996).
Cooper et al. Proceedings of the 8th International Symposium on Molten Salts, R.J. Gale, G. Blomgren, and H. Kojima, Editors, PV 92-16, pp. 386-396 "New, Stable, Ambient-Temperature Molten Salts," The Electrochemical Society: Pennington, NJ (1992).
Fuller et al., "Structure of 1-Ethyl-3-methylimidazolium Hexafluorophosphate: Model for Room Temperature Molten Salts," J. Chem. Soc., Chem. Commun., pp. 299-300 (1994).
Ishikawa et al., "Electric Double-Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts," J. Electrochem. Soc., vol. 141: No. 7, (1994).
Koch et al., "The Interfacial Stability of Li with Two New Solvent-Free Ionic Liquids: 1,2-Dimethyl-3-propylimidazolium Imide and Methide'" J. Electrochem. Soc., vol. 142: No. 7 (1995).
Koch et al., "The Intrinsic Anodic Stability of Several Anions Comprising Solvent-Free Ionic Liquids," J. Electrochem. Soc., vol. 143: No. 3 (1996).
Koch et al., "High Voltage, Ionic Liquids For Electrochemical Capacitors," The Fourth International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Dec. 14, 1994.
Koch et al., "The Performance of Solvent-Free Ionic Liquid Electrolytes in Electrochemical Capacitors," The Fifth International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Dec. 4-6, 1995.
Koresh et al., "Double Layer Capacitance and Charging Rate of Ultramicroporous Carbon Electrode," J. Electrochem. Soc. vol. 124: No. 9 pp. 1379-1385 (1977).
Matsuda et al., "New Electric Double-Layer Capacitors Using Polymer Solid Electrolytes Containing Tetraalkylammonium Salts," J. Electrochem. Soc., vol. 140: No. 7, L109-L110 (1993).
McEwen et al., "EMIPF.sub.6 Based Nonaqueous Electrolytes For Electrochemical Capacitors," Abstract No. 707, p. 861, The Electrochemical Society Meeting Abstracts, vol. 96-2, San Antonio, TX, Oct. 6-11, 1996.
McEwen et al., "Nonaqueous Electrolytes for Electrochemical Capacitors: Imidazolium Cations and Inorganic Fluorides with Organic Carbonates," J. Electrochemical Society, vol. 144: L84 (1997).
McEwen et al., "Nonaqueous Double Layer Cpacitors: Electrolyte and Packaging Considerations For High Voltage Devices," Proceedings of the Sixth International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars, Dec. 9-11, 1996.
McEwen et al., "EMIPF.sub.6 Based Nonaqueous Electrolytes For Electrochemical Capacitors," Elecrochemical Capacitors II, F.M. Delnick, D. Ingersoll, X. Andrieu, and K. Naoi, Editors PV96-25, p. 313, The Electrochemical Society Proceedings Series, Pennington, NJ (1977).
Papageorgiou et al., "The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications," J. Electrochem. Soc. vol. 143: No. 10 pp. 3099-3108 (1996).
Takeuchi et al., "Solid polymer electrolyte, battery and solid-state electric double-layer capacitor using this electrolyte as well as processes for their manufacture," CA Selects Plus: Batteries and Fuel Cells, Abstract No. 637063, Issue 23, p. 2, 1996.
Ue et al., "Ionic Radius of (CF.sub.3 SO.sub.2).sub.3 C.sup.- and Applicability of Stokes Law to Its Propylene and Carbonate Solution," J. Electrochem. Soc., vol. 143: No. 11 L270-L272 (1996).
Ue et al., "Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and .gamma.-Butyrolactone," J. Electrochem. Soc., vol. 141, No. 12:pp. 3336-3342 (1994).
Ue et al., "Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors," J. Electrochem. Soc., vol. 141, No. 11:pp. 2989-2996 (1994).
Ue et al., "Nonaqueous electrolyte solution with high electric conductivity for electrochemical capacitor," No.: 728245, 1996 CAPLUS, Japanese Patent Application No. 95-48743, Abstract Only.
Kita et al., "Electrochemical devices containing two electrolytes," No.: 428795, 1995 CAPLUS, Japanese Patent Application No. 93-106143, Abstract Only.
Endo et al., "Electric double-layer capacitor using nonaqueous electrolyte containing cyclobutane- or cyclopropane-derived quaternary ammonium salt," No.: 138075, 1993 CAPLUS, Japanese Patent Application No. 90-408585, Abstract Only.
Endo et al., "Electric double-layer capacitor using nonaqueous electrolyte containing quaternary ammonium salt derived from pyridazine, pyrimidine, or pyrazine," No.: 138075, 1993 CAPLUS, Japanese Patent Application No. 90-408584, Abstract Only.
Morimoto, Takeshi, "Electrolytic double-layer capacitors containing high-performance organic solvents," No.: 49936, 1993 CAPLUS, Kagaku Kogyo (1992), 43(12), 998-1004.
Okamoto et al., "Electric double-layer capacitors with organic electrolytes," No.: 583103, 1990 CAPLUS, Japanese Patent Application No. 88-313397, Abstract Only.
Matsuzaki et al., "Electric double-layer capacitors using a nonaqueous electrolyte," No.: 507627, 1990 CAPLUS, Japanese Patent Application No. 88-230582, Abstract Only.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nonaqueous electrolyte for electrical storage devices does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nonaqueous electrolyte for electrical storage devices, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nonaqueous electrolyte for electrical storage devices will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-648991

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.