Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Virus or component thereof
Reexamination Certificate
2000-04-24
2002-10-01
Mosher, Mary E. (Department: 1698)
Drug, bio-affecting and body treating compositions
Antigen, epitope, or other immunospecific immunoeffector
Virus or component thereof
C435S069300, C424S186100
Reexamination Certificate
active
06458364
ABSTRACT:
TECHNICAL FIELD
This invention relates to methods for making and using and compositions containing Epstein Barr virus (EBV) gp350 DNA and protein sequences.
BACKGROUND
Epstein-Barr virus (EBV), a member of the herpesvirus group, causes infectious mononucleosis in humans. The disease affects more than 90% of the population. Health analysts estimate the cost of the disease in the United States is 100 million dollars per year. The virus is spread primarily by exchange of saliva from individuals who shed the virus. Children infected with EBV are largely asymptomatic or have very mild symptoms, while adolescents and adults who become infected develop typical infectious mononucleosis, characterized by fever, pharyngitis, and adenopathy. People who have been infected maintain anti-EBV antibodies for the remainder of their lives, and are thus immune to further infection. Currently there is no commercially available EBV vaccine.
In addition to its infectious qualities, EBV has been shown to transform lymphocytes into rapidly dividing cells and has therefore been implicated in several different lymphomas, including Burkitt's lymphoma and oral hairy leukoplakia. EBV has also been detected in tissue samples from nasopharyngeal tumors. Worldwide it is estimated that 80,000 cases of nasopharyngeal cancer occur and it is more prevalent in ethnic Chinese populations.
Development of a live, attenuated vaccine for EBV has been and still is problematic. Because of the potential oncogenic nature associated with EBV, researchers have been reluctant to use a live vaccine approach. This invention overcomes the problems associated with live vaccine development by creating methods and compositions for a subunit vaccine, that does not require the use of a potentially oncogenic live virus. A subunit vaccine uses one or more antigenic proteins from the virus that will elicit an immune response and confer immunity.
Two of the more important antigenic EBV proteins are glycoprotein(s) gp350/300 and gp220/200 that form part of the viral membrane envelope and allow virus particles to bind to and enter human target cells by interacting with the cellular membrane protein, CD21. See Nemerow,
J. Virology
61:1416(1987). They have long been singled out as subunit vaccine candidates but difficulties in obtaining antigenically active protein purified from native sources and low yields from recombinantly produced sources have hampered efforts of researcher and vaccine developers. In the literature these proteins are referred to using a variety of molecular weight ranges (350 or 300 kilodaltons (kD) for one of the proteins and 220 or 200 kDs for the other protein). The gp350 or 300 protein is herein referred to as gp350 protein and the gp220 or 200 protein is herein referred to as gp220 protein. Collectively, both proteins are herein referred to as gp350/220 protein(s).
An alternatively spliced, single gene encodes the gp350/220 proteins and results in the generation of gp350 and gp220 mRNA transcripts; no naturally occurring variations in the gp350/220 gene splice sites are known. The gene produces two expression products, the gp350 and gp220 proteins. The open reading frame for the gp350/220 DNA sequence is 2721 base pairs (bp). The entire reading frame encodes the 907 amino acids of gp350. See U.S. Pat. No. 4,707,358 issued to Kieff (1987). The spliced version of the reading frame covers 2130 bases and translates into gp220 protein, a 710 amino acid sequence. The theoretical molecular weights of gp350 protein and gp220 protein are 95 kD and 70 kD, respectively. The measured molecular weights of expressed gp350 protein and gp220 protein vary but are approximately 350 kilodaltons and 220 kilodaltons (kD), respectively. The extensive glycosylation of the proteins accounts for difference between the predicted and actual molecular weights. In any one cell, both gp350 and gp220 proteins are produced at a molar ratio ranging from about 6:1 to 1:1. For example, in B95-8 cells, which are persistently infected with EBV, the ratio appears to vary but sometimes approaches the 6:1 range. See, Miller,
Proc. Natl. Acad. Sci.
69:383(1972).
Similarly, recombinant production of these glycoproteins has heretofore usually resulted in a mixture of gp350 and gp220 protein being produced. Heretodate, the gp350/220 proteins have been expressed in rat pituitary, Chinese hamster ovary VERO (African green monkey kidney) cells, as well as in yeast cells. See, Whang,
J. Virol.
61:1796(1982), Motz,
Gene
44:353(1986) and Emini,
Virology
166:387(1988). A bovine papillomavirus virus expression system has also been used to make gp350/220 proteins in mouse fibroblast cells. See, Madej,
Vaccine
10:777(1992). Laboratory and vaccine strains of Vaccinia virus have also been used to express gp 350/220 proteins. Modified recombinant versions of the EBV gp350/220 DNA and protein are known in the art. Specifically, recombinant truncated constructs of the gp350/220 gene lacking the membrane spanning sequence have been made. Such constructs still produce a mixture of the two gp 350 and gp220, but deletion of the membrane spanning region permits secretion of the proteins. See, Finerty,
J. Gen. Virology
73:449(1992) and Madej,
Vaccine
10:777(1992). Also, various recombinantly produced restriction fragments and fusion proteins comprising various gp350/220 sequences have also been made and expressed in
E. coli.
See EP Patent Publication 0 173 254 published Jul. 24, 1991.
Accordingly, EBV research relating to gp350/220 heretodate has focused either on obtaining efficient expression of the native gp350/220 sequence or on a modified sequence lacking the transmembrane domain, resulting in a mixture of the two alternate spliced versions of the native or transmembrane lacking protein, or on production of epitopic fragment sequences in &bgr;-galactosidase fusion proteins.
Partially purified preparations of gp350/220 are known. See, Finerty,
J. Gen. Virology
73:449(1992) (recombinantly produced, partially purified). With respect to native gp350/220 protein, in most instances, the purification procedures resulted in inactivating the antigenicity of the protein, making it unacceptable for use in a subunit vaccine. However, highly purified preparations of antigenically active gp350 protein from native (i.e., non-recombinant) sources have been reported in the scientific literature. See, David,
J. Immunol. Methods
108:231(1988). Additionally recombinant vaccine virus expressing gp350/220 protein was used to vaccinate cottontop tamarins against EBV-induced lymphoma. See, Morgan,
J. Med. Virology
25:189(1988), Mackett,
EMBO J.
4:3229(1985) and Mackett,
VACCINES '
86, pp293(Lerner R A, Chanock R M, Brown F Eds., 1986, Cold Spring Harbor Laboratory). However, the viral gp350/220 DNA sequence has not heretofore been engineered so as to enable expression solely of either one of the alternate spliced versions of the gene, thereby enabling and ensuring the production of pure gp350 or gp220 protein. Nor has a recombinant or mutant virus been made that expresses one or the other of the gp350 or gp220 proteins.
Generally, splice sites facilitate the processing of pre-mRNA molecules into mRNA. In polyoma virus, splice sites are required for the efficient accumulation of late mRNA's. Alteration of the 3′ and 5′ splice sites in polyoma virus transcripts decreased or completely blocked mRNA accumulation. See, Treisman,
Nature
292:595(1981). In SV40 virus, excisable intervening sequences facilitate mRNA transport out of the nucleus and mRNA stabilization in the nucleus and because these intron/exon junction sequences facilitate binding of small, nuclear, RNP particles, it is thought that prespliced mRNA's might fail to associate properly with processing pathways. It has been shown that point mutations at exon/intron splice sites reduce exon/intron cleavage and can disrupt pre-mRNA processing, nuclear transport and stability. See, Ryu,
J. Virology
63:4386(1989) and Gross,
Nature
286:634(1980).
Therefore, until the present invent
Jackman Winthrop T.
Spaete Richard
Aviron
Mosher Mary E.
Pennie & Edmonds LLP
LandOfFree
Non-splicing variants of gp350/220 does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Non-splicing variants of gp350/220, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-splicing variants of gp350/220 will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2996861