Non-ozone depleting co-solvent compositions and adhesive...

Compositions: coating or plastic – Coating or plastic compositions – Hydrocarbon containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C106S287210, C106S287250, C106S287270, C106S287280, C252S364000

Reexamination Certificate

active

06726760

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to a non-ozone depleting, non-flammable co-solvent composition useful as a carrier for actives such as accelerators, activators, catalysts or other primer materials for use in combination with adhesive compositions. More particularly, the present invention relates to a co-solvent composition comprising a solution of a halogenated compound in combination with an effective amount of one or more aliphatic or aromatic hydrocarbons such as isoparaffins, isooctane, ligroin, hexane, toluene and mixtures thereof.
BACKGROUND OF THE INVENTION
Chlorinated hydrocarbons such as 1,1,1-trichloroethane, other chlorinated solvents and chlorfluoro hydrocarbons (CFC's), such as C
2
F
3
Cl
3
, also known commercially under the trademark FREON®, have been used for many years as solvents in numerous applications. These materials have shown to be very useful in the preparation of and as carriers for primer, activator, catalyst and accelerator compositions used in the adhesive field. These accelerators compositions often contain compounds, such as amine-bearing compounds, which require a solvent carrier for proper transport to and penetration of the substrate surface. Additionally, solvents are used to dilute the pure active compound to a useful concentration, usually on the order of about 0.01 to about 2% by weight.
In recent years, the use of chlorinated hydrocarbons, other chlorinated solvents and CFC's has been substantially lessened due to their deleterious effect on the environment. Regulations have been promulgated not only in the United States but in countries throughout the world to accelerate the phase-out of environmentally destructive solvents, and in particular those which are believed to be ozone-depleting substances. In addition to laws designed to prevent the use of these substances, product labeling requirements have also been promulgated to insure notice is given as to those compounds used as alternatives. Finding acceptable alternatives, however, has been an extremely difficult task. For example, in applications such as adhesive accelerator compositions, the solvent must possess high chemical stability, non-flammability, low toxicity, and have a low volatile organic solvent (VOC) content, yet be sufficiently volatile to readily evaporate once applied, depositing the active ingredient, e.g. an amine accelerator, on a substrate. In addition to these requirements, consideration must be given to cost factors which are important for commercial feasibility.
Attempts to find good solvent systems which balance non-ozone depleting and non-flammable characteristics with sufficient volatility to be useful in adhesive applications, have not been entirely successful. Although many materials possess the ability to act as volatile solvents, most have been too flammable or toxic to serve as suitable replacements for conventional ozone-depleting compounds, i.e. chlorinated hydrocarbons or CFC's. For example, materials such as heptane, acetone, methylethyl ketone, isopropanol, and methanol are excellent solvent systems, with good volatility, i.e. low flash point temperatures and high vapor pressures, but are extremely flammable. Other substances such as isoparaffins, and propylene glycol ether are less flammable, but do not exhibit adequate solvent performance properties alone for use in primer or accelerator compositions for adhesive systems.
One particular class of non-ozone depleting substances, which have been used in non-aqueous cleaning applications, are perfluorocarbons (PFC's). These materials are essentially non-toxic, non-flammable and thermally and hydrolitically stable alternatives to CFC's. In fact, the U.S. Environmental Protection Agency (EPA) has exempted PFC's from their VOC list, which indicates that they are non-ozone depleting and essentially non-reactive and non-polluting in the vapor phase. PFC's do, however, have the drawback of having low solvency for polar materials and most hydrocarbons. Thus, perfluorocarbons would not in themselves be expected to be useful as carriers for materials which require a solvent carrier, such as adhesion promoter compositions.
It is apparent, therefore, that a need exists for a solvent system which can carry actives, such as accelerator, activator, initiator, catalyst or primer compounds for adhesives, and which possess the following characteristics: non-ozone depleting, non-flammable, little or no VOC yet sufficient volatility for use as a carrier for active ingredients, low in toxicity and affordable in cost. The present invention is directed to overcoming the solvency deficiencies of perfluorocarbons, as well as addressing the aforementioned requirements for a useful alternative to CFC'S.
SUMMARY OF THE INVENTION
The present invention is directed to non-ozone depleting and non-flammable solvent compositions which include a solution of a halogenated first component selected from the group consisting of perfluorocarbons, dihydropolyfluoroalkanes having from 5 to 7 carbons, trihydropolyfluoroalkanes having 5 to 7 carbons, parachlorobenzotrifluoride, monochlorotoluene, 3,4-dichlorobenzotrifluoride, perchloroethylene, alpha, alpha, alpha-trifluorotoluene and mixtures thereof; and an aliphatic or aromatic hydrocarbon second component having from 6 to 20 carbons. The aliphatic or aromatic hydrocarbon preferably includes isoparaffins, isooctane, ligroin, hexane, toluene and mixtures thereof.
It has been discovered that the aforementioned halogenated first component when combined with the aliphatic or aromatic hydrocarbon second component results in a co-solvent composition which has the above-desired characteristics necessary to serve as replacements for CFC's in adhesive promoter compositions. Additionally, quite unexpectedly the aliphatic or aromatic hydrocarbon when incorporated into an adhesive primer composition significantly improves the bonding strength of cyanoacrylate adhesives on plastic. While the aliphatic or aromatic hydrocarbon component itself may be unacceptable as a commercially viable carrier, when combined with the first co-solvent component, an excellent and safe carrier composition is formed.
For purposes of the present invention, the term “promoter” will be used to include accelerator, activator, initiator, catalyst or adhesion enhancing compounds, as well as other compounds used for initiating, accelerating or otherwise enhancing the polymerization of adhesive compositions.
The inventive co-solvent compositions are non-ozone depleting, non-flammable solvent systems which serve as excellent carriers for the aforementioned promoter components. Thus, for example, an amine-containing accelerator for cyanoacrylate adhesives, may be added to the co-solvent composition to form an accelerator composition. Other promoter compositions for various adhesive systems, such as anaerobic adhesives, olefinic adhesives, epoxy adhesives, and acrylic adhesives, among others, may be formed from the present co-solvent compositions. Such promoter compositions are formed by adding the promoter component to the co-solvent composition in an appropriate amount such that when applied to a substrate surface, sufficient promoter component will be deposited to serve its intended function. The co-solvent compositions of the present invention are azeotropic which correlates with their non-flammable volatility.
The respective amounts of the two co-solvent materials may vary and is only limited by respective amounts which will no longer effectively dissolve actives. In general, the co-solvent compositions include the halogenated first component to be present in amounts of about 40% to about 98% by weight of the co-solvent composition, preferably about 75% to 90% of the composition, and most preferably about 84% to about 88%. The aliphatic or aromatic hydrocarbon second component may be present in amounts of about 2% to about 60% by weight, and preferably about 2% to about 25% and most preferably, about 2% to about 12% of the co-solvent composition.
These co-solvent soluti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-ozone depleting co-solvent compositions and adhesive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-ozone depleting co-solvent compositions and adhesive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-ozone depleting co-solvent compositions and adhesive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3207264

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.