Radiant energy – Invisible radiant energy responsive electric signalling – With or including a luminophor
Reexamination Certificate
1998-08-11
2001-06-05
Hannaher, Constantine (Department: 2878)
Radiant energy
Invisible radiant energy responsive electric signalling
With or including a luminophor
C250S363010, C250S363070
Reexamination Certificate
active
06242743
ABSTRACT:
FIELD OF THE INVENTION
This disclosure relates generally to tomographic imaging and, in particular, relates to a tomographic imaging system for imaging ionizing radiation such as gamma rays or x rays.
BACKGROUND OF THE INVENTION
In conventional gamma cameras such as Anger cameras known in the art, a single radiation detector having a planar surface is employed for detecting gamma rays for tomographic imaging. A radiopharmaceutical or radioisotope, chosen for its affinity for a particular region or metabolic function of interest, is administered to the patient. The radioisotope emits gamma radiation in all directions from the target location or process. Some of the emitted gamma rays leave the body in the direction of the detectors carrying with them information about their location of origin. The sensitivity of conventional gamma cameras to gamma radiation can be increased by employing a multiplicity of detector heads. When performing Single Photon Emission Computed Tomography (SPECT) using such multiple-detector systems, the detectors are caused to orbit the patient or the object of interest in order to sample from many locations around the object the distribution of radioactivity being emitted from the patient or the object of interest. In conventional SPECT using large detectors, the orbiting of the detector or detectors and the sampling of the gamma rays from multiple directions is necessary in order to provide sufficient information to reconstruct a three-dimensional image of the radiation source by means of computed tomography.
In the prior art, the detectors are typically mounted on a gantry to provide structural support and to orbit the detector around the object of interest. The detector is shielded to prevent stray gamma rays (those not originating from the object of interest) from being detected. Between the radiation detector and the object being imaged is a collimator that is used to restrict the acceptance, or the direction of travel, of incident gamma rays. Typically this collimator is constructed to provide a multiplicity of small holes in a dense, high-atomic-number material such as lead. The gamma rays will pass through the holes if they travel in a direction aligned with the hole but will tend to be absorbed by the collimator material if they travel in a direction not aligned with the holes.
Conventional gamma camera detectors used for medical imaging have a large, flat field of view (typically about 300 in
2
) and are very heavy, typically weighing several hundred pounds. These detectors must be made to orbit the patient or object of interest as close as possible (for best image quality) and with a high degree of accuracy and precision. In the current state of the art, large gantries and powerful motors are required to control and accomplish this motion. The safety of the patient in such systems is always a concern. The size and weight of conventional systems often limit or preclude entirely certain dynamic (or “real-time”) imaging procedures that require quickly obtaining views of the patient from sufficiently many directions to allow multiple time-sequenced tomographic images to be produced. Due to their weight and the requirements for accurate detector rotation, conventional tomographic gamma camera systems impose elaborate site requirements and operating conditions and are practically incapable of being relocated to another site. Thus, there is a need for tomographic systems that are mobile, allowing the imaging system to come to the patient rather than forcing the patient to be transported to the imaging system. Often, it is unsafe, inconvenient or impossible to move the patient to the conventional gamma camera system. System mobility can improve diagnostic cost efficiencies and provide better health care as a result of timely, on-the-spot prognosis. Moreover, the economics of medical imaging would be improved if the weight of the system could be reduced and the site conditions for the system could be simplified. Thus, there exists a clinical need for tomographic systems that are smaller, that avail themselves to existing clinical applications as well as emerging special-purpose clinical applications, and which impose less stringent site requirements.
Many of the current problems in nuclear medicine imaging are caused by the large flat face of the conventional detector. The algorithms used to determine the location of the gamma interaction (the gamma event) in Anger cameras favor large, flat crystals. These positioning algorithms break down near the edges of the detector producing a significant “dead margin” of several centimeters around the perimeter of the detector. Not only is the dead margin unable to produce usable information, it makes difficult or impossible several types of clinical acquisition protocols, such as lateral breast imaging adjacent to the chest wall and SPECT imaging of the breast.
One of the major problems in nuclear medicine is the poor spatial resolution in the images. This poor spatial resolution is caused mostly by the collimator, and only slightly by the intrinsic resolution in the detector. The collimator restricts the angle of acceptance of incident gamma rays and thus produces a distance-dependent resolution that grows linearly with distance between the source and detector. Roughly speaking, there is loss of 1 mm in resolution for every 1 cm distance between the source and the detector. Simple geometry and the need to clear the patient during an orbital scan prohibit the entire camera face from approaching the patient. Inevitably, in nearly all SPECT applications, part of the camera face is far from the patient and suffers serious loss of resolution.
One clinical application that can benefit from improved spatial resolution is the detection and diagnosis of breast cancer. X-ray Mammography is the standard procedure used in detecting small non-palpable abnormalities in breast tissue. Although modern x-ray mammography has a sensitivity of nearly 90% for the detection of breast cancers, its specificity (the ability to distinguish malignant from benign tissue) is rather low. Of all the breast biopsies performed because of suspicious x-ray mammograms, only about 11-36% are positive for cancer. The path to final diagnosis, which may typically involve percutaneous fine-needle aspiration, stereotactically guided core biopsy, or surgical excision, is often long, expensive, and emotionally and physically traumatic for the patient. Nuclear Mammography is a promising new technique for the detection of breast cancer. Nuclear Medicine studies are a unique and valuable clinical tool. They can distinguish benign from malignant lesions based on cell metabolism, providing a non-invasive cost-effective intermediate option before resorting to biopsy. In recent years, the importance of Nuclear Mammography and the number of clinical studies performed has grown rapidly.
Nuclear Mammography has been shown to be a promising alternative in the process of locating and diagnosing larger breast lesions. However, Nuclear Mammography with conventional gamma cameras suffers from several drawbacks which severely limit its utility in breast imaging applications. Conventional detectors and collimators lack sufficient spatial resolution to detect and image lesions smaller than about 10 mm. The insensitive “dead margin” near the edge of the detector keeps the useful field of view several centimeters away from the chest wall and limits the amount of the breast that can be imaged laterally. The large size and weight of the detector often limit the clinical applications to lateral planar imaging and preclude medial breast imaging and conventional orbital SPECT of the breast. Tomography would be preferred over planar imaging because SPECT generally provides better lesion contrast.
A need exists for a gamma camera able to perform tomographic imaging without using large detectors or collimators or the orbiting motion of such detectors or collimators. A non-orbiting tomography system composed of smaller detector modules would enable improvements spatial resolution
DeVito Raymond P.
Domnanovich James R.
Haines Edward J.
Gabor Otilia
Hannaher Constantine
Meroni & Meroni P.C.
Meroni, Jr. Charles F.
Mosaic Imaging Technology, Inc.
LandOfFree
Non-orbiting tomographic imaging system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Non-orbiting tomographic imaging system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-orbiting tomographic imaging system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2498679