Non-linear method of guiding to arbitrary curves with...

Data processing: vehicles – navigation – and relative location – Navigation – Employing position determining equipment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S202000, C701S205000, C701S210000, C340S990000

Reexamination Certificate

active

06377889

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a navigation and guidance system providing heading correction data to guide to, or maintain a vehicle on, a predetermined course. As used herein, the term vehicle encompasses any suitable manned or unmanned mobile craft, vehicle, missile or means of conveyance, adapted for movement on or through air, water, space or land.
BACKGROUND ART
Many tasks necessitate the navigation of a predetermined route across/through a particular section of land, water surface, seabed, air space or celestial body, including agricultural spraying, geographic surveying, SAR operations, boating man overboard recovery, fire fighting, penetrating hostile airspace and so forth. In many applications, the exact adherence to the predetermined course is degraded by external factors such as wind and tides, internal factors such as system inaccuracies and performance limitations together (when present) with human operator error.
There is often a need to determine the corrective course heading necessary to restore a vehicle to a predetermined course in the most expeditious manner. This may be most simply effected by guiding the vehicle straight to the closest point of the predetermined course. However, due to the intrinsic response latency of both the system and pilot together with the performance characteristics of the vehicle, a corrective heading guiding directly to the closest point of the predetermined course invariably results in the vehicle repetitively overshooting the predetermined course generating lateral oscillations about the predetermined course. This may be avoided if the vehicle came to rest at the point intersection with the predetermined course and was then turned to resume motion along the predetermined course. However, this solution would be unfeasible and undesirable in many dynamic applications employing relatively high-speed vehicles such as in aerial crop-spraying. Furthermore, in many timecritical applications, it is often more effective to bring the vehicle back on course whilst maintaining progress in the direction of the predetermined course without an appreciable reduction in velocity. This requires the vehicle to take a corrective course continuously converging with the predetermined course until coincident with same.
The development of satellite navigation such as Global Positioning System (GPS) provides a means of readily establishing a vehicle's position, its actual course and calculating its displacement from a predetermined course or waypoint. However, in order to provide a corrective heading for an off-course vehicle, a specific destination point on the predetermined course is required. Other than the direct course to the closest point of intersection (with the attendant disadvantages discussed above) specifying any other arbitrary point on the predetermined course would clearly result in an equally arbitrary guidance solution.
Existing prior art solutions utilize the judgment of the vehicle's pilot to interpret a display representing the linear displacement of the vehicle from the closest point of the predetermined course. A lightbar consisting of a row of light emitting diodes (LED) denotes the vehicle's deviation to the left or right of the swath by respectively illuminating a proportional number of LEDs to the left or right of a central ‘on course’ LED.
The finite resolution of the lightbar (e.g. one LED=30 cm), together with the absence of any corrective heading data results in course oscillations about the swath centre line as the pilot attempts to remain within the tolerance/resolution of the display means. Whilst replacing the corrective displacement indicator with a corrective heading would ameliorate the disadvantages described herein, there remains the hitherto unresolved problem of which point on the predetermined course to guide to. This problem is further exacerbated if the predetermined course is non-linear.
The above described need to restore and maintain a particular vehicle/entity along a defined path is not solely restricted to physical vehicles in the conventional sense of the term. This requirement is equally applicable to non-physical vehicles or entities, such as computer-generated ‘virtual’ objects/entities in applications such as, navigation and flight/steering simulation software and the motion control of vehicles/objects/figures/guided projectiles and entities types in computer games.
There are numerous other non-vehicular applications or processes which also require the maintenance of dynamic control of two or more variables in accordance with an optimum predetermined mathematical solution, wherein the actual instantaneous numerical value or quantity of the said variables would analogous to the ‘vehicle’ location in the above described applications. The desired predetermined course of the ‘vehicle’ could be represented by a plot of the optimum solution with respect to time (or some other irreversible quantity). As an example, the desired solution/predetermined course could be the instantaneous ratio (which may vary over time) of two or more chemical constituents being continuously combined as part of an industrial process. In this instance, any variation of the ratio of the constituents from the desired solution would be equivalent to a displacement of a physical vehicle from a predetermined course. The ideal corrective action to the input (or output) rate of one or more of the constituents to obtain the desired ratio is governed by directly equivalent criteria to that described above in the vehicular application, i.e. a critically damped, non-oscillating return to the correct ratio.
Consequently, despite the differing nature of the above described applications and though in some instances grammatically unorthodox, consistent terminology will be used throughout the specification for the sake of succinctness and clarity, wherein the following definitions of key terms shall apply in both the description and claims.
the term ‘vehicle’ is any object or quantity whose location may vary with respect to some irreversible variable such as time and encompasses any suitable manned or unmanned mobile craft, vehicle, missile or means of conveyance (including simulated, virtual or software generated vehicles or entities), adapted for movement on or through air, water, space, land or any other real, simulated, virtual or mathematically generated environment and also includes dynamic numerical values attributed to particular quantities, ratios and/or other parameters.
the term ‘location’ is defined as a point of interest, a real or imaginary postion in a two, three or more dimensional space, or a coordinate in any convenient co-ordinated system.
the term ‘corrective heading’ includes a conventional heading change, such as a change of heading, pitch, roll or yaw or a set of partial derivatives, such as a change in pressure, temerature or speed with respect to time.
the term ‘predetermined’ includes any physical, virtual, geographical path or mathematical solution representing the desired location for the vehicle location.
DISCLOSURE OF INVENTION
It is object of the present invention to provide a means for guiding to linear and non-linear guidance curves/courses or solutions which overcomes the aforesaid disadvantages.
It is a further object of the present invention to provide corrective data to mitigate any deviation of a vehicle from a predetermined course by progressively re-aligning the vehicle's heading to coincide with the predetermined course whilst minimizing any discontinuities or excessive course oscillations.
The present invention provides a guidance system for a vehicle and a method for executing same, comprising;
navigation system capable of providing vehicle location information including the position of said vehicle,
a data storage means capable of storing at least one pre-determined course having a preferred direction of travel,
a processing means capable of receiving the said vehicle location information, calculating the magnitude of any displacement of said vehicl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-linear method of guiding to arbitrary curves with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-linear method of guiding to arbitrary curves with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-linear method of guiding to arbitrary curves with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2907233

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.