Non-invasive, miniature, breath monitoring apparatus

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S303000

Reexamination Certificate

active

06599253

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a breath monitoring apparatus for diagnostic purposes and more particularly relates to a miniature spectroscopic gas analyzer for patient breath analysis to determine cardiac output (Q).
2. Background Information
The determination of Q—the amount of blood pumped by the heart per minute—at rest or during exercise is a powerful diagnostic tool for assessing patient health. Currently, the state of diagnostic technology is hospital and research-center based and features expensive, sensitive equipment.
A series of invasive and non-invasive techniques have been developed for Q monitoring during rest and submaximal exercise. The “gold” standard generally is considered to be the dye-dilution method, with thermodilution a close second. Both methods are invasive and measure Q directly. Noninvasive techniques for Q monitoring encompass four principal approaches: 1) foreign gas rebreathing (e.g., acetylene or nitrous oxide analysis in breath), 2) indirect Fick (e.g., carbon dioxide analysis in breath), 3) transthoracic electrical bioimpedance, and 4) esophageal continuous-wave Doppler ultrasonography. These prior art methods are described below, along with their strengths and weaknesses.
Thermodilution (TD) is the traditional method for continuous and semicontinuous Q determination and many publications describe such a method. (Zollner, C. et al, Crit. Care Med. 1999, 27, 293-298; and Zollner, C. et al, J. Cardiothorac. Vasc. Anesth. 2000, 14, 125-129.) Also, numerous patents describing TD apparatus and accessories have been issued. Patents issued include U.S. Pat. No. 4,217,910, issued Aug. 19, 1980 to Khalil, H. H. for Internal jugular and left ventricular thermodilution catheter; U.S. Pat. No. 4,236,527, issued Dec. 2, 1980 to Newbower, R. S. et al for a Q detection by multiple frequency thermodilution and U.S. Pat. No. 4,819,655, issued Apr. 11, 1989 to Webler, W. E. for an Injectateless thermal Q determination method and apparatus.
However, this technique has significant drawbacks, primarily resulting from its invasive nature. A catheter needs to be inserted into the pulmonary artery and manual injection of fluid into the blood typically is required. Due to the serious nature of these interventions, the technique is usually restricted to monitoring hospitalized critically ill patients. Additionally, the response time of thermodilution monitors is too slow for the immediate detection of acute changes in Q and some clinical conditions, such as the rapid infusion of cold solutions, can interfere with the continuous Q measurement (Haller, M.; Zollner, C.; Briegel, J.; Forst, H., Crit. Care Med. 1995, 23, 860-866).
Non-Invasive methods of measuring Q include: Transthoracic electrical bioimpedance (TEB) monitors are non-invasive alternatives to TD but require the use of an endotracheal tube, which limits the technique's practicality. (Vohra, A. et al, Br. J. Anaesth. 1991, 67, 64-68; Tibballs, J. et al, Anaesth. Intensive Care 1992, 20, 326-331; and Wallace, A. W. et al, Anesthesiology 2000, 92, 178-189). A number of patents describing the TEB technique have been issued (e.g., U.S. Pat. No. 5,423,326, issued Jun. 13, 1995, to Wang, X. et al, for an Apparatus and method for measuring Q and U.S. Pat. No. 5,469,859, issued Nov. 28, 1995 to Tsoglin, A. et al for a Non-invasive method and device for collecting measurements representing body activity and determining cardiorespiratory parameters of the human body based upon the measurements collected.).
Esophageal continuous-wave Doppler ultrasonography (ECO) has also emerged as a non-invasive method for Q monitoring (Pierpont, G. L. et al, J. Cardiovasc. Technol. 1990, 9, 31-34; Schiller, N. B., Anesthesiology 1991, 74, 9-14; and Webster, J. H. H. et al, European Journal of Vascular Surgery 1992, 6, 467-470). ECO has the advantage of being a non-invasive technique and has been recommended over thoracic electrical bio-impedance and thermo-dilution for field monitoring of seriously injured soldiers. (World, M. J. QJM-Mon. J. Assoc. Physicians 1996, 89, 457-462)
A number of Q monitors using the ECO technique have been patented. (e.g., U.S. Pat. No. 4,676,253, issued Jun. 30, 1987 to Baudino, M. D. for a Q monitor; U.S. Pat. No. 4,676,253, issued Jun. 30, 1987, to Newman, W. et al, for a Method and apparatus for non-invasive determination of Q; and U.S. Pat. No. 4,671,295, issued 1987, to Abrams, J. H. et al, for a Method for measuring Q.
A serious limitation of both the TEB and ECO methods is their inability to be employed during exercise due to excessive noise. A method of monitoring Q by computing blood pressure waveforms with fuzzy logic algorithms has also been disclosed recently, but has not been shown to be reliable or accurate especially when the subject is exercising. (U.S. Pat. No. 6,007,491, issued Dec. 28, 1999 to Ling, J. et al, for a Q monitor using fuzzy logic blood pressure analysis.)
Metabolic monitors commonly have been used to measure oxygen (O
2
) consumption and/or carbon dioxide (CO
2
) production to subsequently calculate Q. Such monitors are described by Zenger, M. R. et al, Am. J. Cardiol. 1993, 71, 105-109; Sasse, S. A. et al, Crit. Care Med. 1994, 22, 86-95; and Wippermann, C. F. et al, Intensive Care Med. 1996, 22, 467-471. Some of these devices have been patented (e.g., U.S. Pat. No. 5,836,300, issued Nov. 17, 1998; to Mault, J. R. for a Metabolic gas exchange and non-invasive Q monitor; and U.S. Pat. No. 5,971,934, issued Oct. 26, 1999 to Scherer, P. W. et al for a Non-invasive method for determining Q). However, the CO
2
re-breathing method relies on a number of tenuous assumptions and is difficult to use during heavy exercise.
Non-invasive diagnostic methods for measuring Q using soluble gas uptake by the lungs also have existed for many years. Acetylene (C
2
H
2
) has been useful in such techniques, because its appropriate blood to gas partition coefficient usually lies in the range of 0.7-0.9 and is generally the preferred method for non-invasive Q monitoring. (Kennedy, R. R. et al Br. J. Anaesth. 1993, 71, 398-402 and Rosenthal, M. et al, Eur. Resp. J. 1997, 10, 2586-2590). C
2
H
2
-helium re-breathing techniques are based on the principle that C
2
H
2
, but not helium (He), diffuses from the alveoli to the pulmonary capillaries so that the rate of C
2
H
2
decrease in the alveolar space depends on pulmonary blood flow. The traditional approach has been to measure C
2
H
2
uptake during rebreathing from a closed system (Kallay, M. C. et al, Circulation 1985, 72, 188-188 and Crapo, R. O. et al, Am. Rev. Respir. Dis. 1986, 133, A65-A65.) However a non-rebreathing open-circuit steady-state method has also been reported. (Barker, R. C. et al, J. Appl. Physiol. 1999, 87, 1506-1512)
Both require rapid gas analyzers, especially if measurements are to be made at high breathing frequencies during exercise. An insoluble gas, such as He or sulfur hexafluoride (SF
6
) is required to determine the gas volume in the system and also as an indication when gas mixing is achieved. Carbon dioxide concentrations are also needed to convert measured minute ventilation to alveolar ventilation. It is alveolar and not minute ventilation that is used in the formula to determine Q.
The current instrument of choice for measuring C
2
H
2
in breath is the respiratory mass spectrometer (MS). A sample is channeled from the breathing apparatus and introduced into the MS, where it is ionized and detected on a semi-continuous basis. Although this technique is reasonably fast (response times down to 20 msec., but typically 50 msec.), it does have some inherent limitations, including:
a.) Primarily a lab instrument,
b.) High power consumption,
c.) Bulky,
d.) High sensitivity to mechanical vibration and shock,
e.) Complex to use,
f.) Expensive to buy and maintain.
Faster response times are also important as the C
2
H
2
concentration profile within a single breath is of interest. A portable, robust, non-invasive, low cost alternative to mass spectrometry measuring C

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-invasive, miniature, breath monitoring apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-invasive, miniature, breath monitoring apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-invasive, miniature, breath monitoring apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3081859

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.