Drug – bio-affecting and body treating compositions – In vivo diagnosis or in vivo testing
Reexamination Certificate
1999-01-19
2003-11-18
Graser, Jennifer E. (Department: 1645)
Drug, bio-affecting and body treating compositions
In vivo diagnosis or in vivo testing
C424S009600, C424S009610, C424S093100, C436S800000, C435S007350, C435S007900, C435S008000, C435S173300, C435S968000, C435S069100, C536S025320, C536S024100, C536S023400
Reexamination Certificate
active
06649143
ABSTRACT:
I. FIELD OF THE INVENTION
The present invention relates to noninvasive methods and compositions for detecting, localizing and tracking light-emitting entities and biological events in a mammalian subject.
II. BACKGROUND OF THE INVENTION
The ability to monitor the progression of infectious diseases is limited by the current ex vivo methods of detecting and quantifying infectious agents in tissues. The replication of an infectious agent in a host often involves primary, secondary and tertiary sites of replication. The sites of replication and the course that an infectious agent follows through these sites is determined by the route of inoculation, factors encoded by the host as well as determinants of the infecting agent.
Experience may offer, in some cases, an estimate of probable sites of replication and the progress of an infection. It is more often the case, however, that the sites of infection, and the pace of the disease are either not known or can only roughly be estimated. Moreover, the progression of an infectious disease, even in inbred strains of mice, is often individualized, and serial, ex vivo analyses of many infected animals need to be conducted to determine, on the average, what course a disease will follow in an experimentally infected host.
Accordingly, it would be desirable to have a means of tracking the progression of infection in an animal model. Ideally, the tracking could be done non-invasively, such that a single animal could be evaluated as often as necessary without detrimental effects. Methods and compositions of the present invention provide a non-invasive approach to detect, localize and track a pathogen, as well as other entities, in a living host, such as a mammal.
III. SUMMARY OF THE INVENTION
In one embodiment, the invention includes a noninvasive method for detecting the localization of a biocompatible entity in a mammalian subject. The entity can be a molecule, macromolecule, cell, microorganism (including a pathogen), a particle, or the like.
The method includes administering to the subject a conjugate of the entity and a light-generating moiety. Light-generating moieties are typically molecules or macromolecules that give off light. They may generate light as a result of radiation absorption (e.g., fluorescent or phosphorescent molecules), or as a result of a chemical reaction (e.g., bioluminescent proteins). Exemplary light-generating moieties are bioluminescent proteins, such as luciferase and aequorin, and colored or fluorescent proteins, such as yellow fluorescent protein and ferredoxin IV.
The moiety may be conjugated to the entity by a variety of techniques, including incorporation during synthesis of the entity (e.g., chemical or genetic, such a fusion protein of an antibody fragment and a light-generating protein), chemical coupling post-synthesis, non-covalent association (e.g., encapsulation by liposomes), in-situ synthesis in the entity (e.g., expression of a heterologous bioluminescent protein in a transformed cell), or in situ activatable promoter-controlled expression of a bioluminescent protein in cells of a transgenic animal stimulated by a promoter inducer (e.g., interferon-activated promoter stimulated by infection with a virus).
After a period of time in which the conjugate can localize in the subject, the subject is immobilized within the detection field of a photodetector device for a period of time effective to measure a sufficient amount of photon emission (with the photodetector device) to construct an image. An exemplary photodetector device is an intensified charge-coupled device (ICCD) camera coupled to an image processor. If the image can be constructed in a time short relative to the time scale at which an “unimmobilized” subject moves, the subject is inherently “immobilized” during imaging and no special immobilization precautions are required. An image from the photon emission data is then constructed.
The method described above can be used to track the localization of the entity in the subject over time, by repeating the imaging steps at selected intervals and constructing images corresponding to each of those intervals.
The method described above can be used in a number of specific applications, by attaching, conjugating or incorporating targeting moieties onto the entity. The targeting moiety may be an inherent property of the entity (e.g., antibody or antibody fragment), or it may be conjugated to, attached to, or incorporated in the entity (e.g., liposomes containing antibodies). Examples of targeting moieties include antibodies, antibody fragments, enzyme inhibitors, receptor-binding molecules, various toxins and the like. Targets of the targeting moiety may include sites of inflammation, infection, thrombotic plaques and tumor cells. Markers distinguishing these targets, suitable for recognition by targeting moieties, are well known.
Further, the method may be used to detect and localize sites of infection by a pathogen in an animal model, using the pathogen (e.g., Salmonella) conjugated to a light-generating moiety as the entity.
In a related embodiment, the invention includes a noninvasive method for detecting the level of a biocompatible entity in a mammalian subject over time. The method is similar to methods described above, but is designed to detect changes in the level of the entity in the subject over time, without necessarily localizing the entity in the form of an image. This method is particularly useful for monitoring the effects of a therapeutic substance, such an antibiotic, on the levels of an entity, such as a light-emitting bacterium, over time.
In another embodiment, the invention includes a noninvasive method for detecting the integration of a transgene in a mammalian subject. The method includes administering to the subject, a vector construct effective to integrate a transgene into mammalian cells. Such constructs are well known in the art. In addition to the elements necessary to integrate effectively, the construct contains a transgene (e.g., a therapeutic gene), and a gene encoding a light-generating protein under the control of a selected activatable promoter. After a period of time in which the construct can achieve integration, the promoter is activated. For example, if an interferon inducible promoter is used, a poly-inosine and -cytosine duplex (poly-IC) can be locally administered (e.g., footpad injection) to stimulate interferon production. The HIV LTR could similarly be used and induced, for example, with dimethylsulfoxide (DMSO). The subject is then placed within the detection field of a photodetector device, such as an individual wearing light-intensifying “night vision” goggles, and the level of photon emission is measured, or evaluated. If the level is above background (i.e., if light can be preferentially detected in the “activated” region), the subject is scored as having integrated the transgene.
In a related embodiment, the invention includes a noninvasive method for detecting the localization of a promoter-induction event in an animal made transgenic or chimeric for a construct including a gene encoding a light-generating protein under the control of an inducible promoter. Promoter induction events include the administration of a substance which directly activates the promoter, the administration of a substance which stimulates production of an endogenous promoter activator (e.g., stimulation of interferon production by RNA virus infection), the imposition of conditions resulting in the production of an endogenous promoter activator (e.g., heat shock or stress), and the like. The event is triggered, and the animal is imaged as described above.
In yet another embodiment, the invention includes pathogens, such as Salmonella, transformed with a gene expressing a light-generating protein, such as luciferase.
In another aspect, the invention includes a method of identifying therapeutic compounds effective to inhibit spread of infection by a pathogen. The method includes administering a conjugate of the pathogen and a light-generating moiety to control and experimenta
Benaron David A.
Contag Christopher H.
Contag Pamela R.
Graser Jennifer E.
Robins & Pasternak LLP
The Board of Trustees of the Leland Stanford Junior University
LandOfFree
Non-invasive localization of a light-emitting conjugate in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Non-invasive localization of a light-emitting conjugate in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-invasive localization of a light-emitting conjugate in a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3175227