Non-invasive device and method for the diagnosis of...

Surgery – Diagnostic testing – Respiratory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S023300, C422S084000

Reexamination Certificate

active

06575918

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention relates generally to vascular occlusions of the respiratory system, and more particularly to non-invasive devices and methods for the diagnosis of a pulmonary embolism and related disorders.
2. Description of Prior Art
A pulmonary embolism occurs when an embolus become lodged in lung arteries, thus blocking blood flow to lung tissue. An embolus is usually a blood clot, known as a thrombus, but may also comprise fat, amniotic fluid, bone marrow, tumor fragments, or even air bubbles that block a blood vessel. Unless treated promptly, a pulmonary embolism can be fatal. In the United States alone, around 600,000 cases occur annually, 10 percent of which result in death.
The detection of a pulmonary embolism is extremely difficult because signs and symptoms can easily be attributed to other conditions and symptoms may vary depending on the severity of the occurrence. Frequently, a pulmonary embolism is confused with a heart attack, pneumonia, hyperventilation, congestive heart failure or a panic attack. In other cases, there may be no symptoms at all.
Often, a physician must first eliminate the possibility of other lung diseases before determining that the symptoms, if any, are caused by a pulmonary embolism. Traditional diagnostic methods of testing involve blood tests, chest X-rays, and electrocardiograms. These methods are typically more effective in ruling out other possible reasons than for actually diagnosing a pulmonary embolism. For example, a chest x-ray may reveal subtle changes in the blood vessel patterns after an embolism and signs of pulmonary infarction. However, chest x-rays often show normal lungs even when an embolism is present, and even when the x-rays show abnormalities they rarely confirm a pulmonary embolism. Similarly, an electrocardiogram may show abnormalities, but it is only useful in establishing the possibility of a pulmonary embolism.
As a pulmonary embolism alters the ability of the lungs to oxygenate the blood and to remove carbon dioxide from the blood, one method of diagnosing the condition involves taking a specimen of arterial blood and measuring the partial pressure of oxygen and carbon dioxide in the arterial blood (i.e., an arterial blood gas analysis). Although a pulmonary embolism usually causes abnormalities in these measurements, there is no individual finding or combination of findings from the arterial blood gas analysis that allows either a reliable way to exclude or specific way of diagnosing pulmonary embolism. In particular, at least 15-20% of patients with a documented pulmonary embolism have normal oxygen and carbon dioxide contents of the arterial blood. Accordingly, the arterial blood analysis cannot reliably include or exclude the diagnosis of a pulmonary embolism.
The blood D-dimer assay is another diagnostic method that has become available for commercial use. The D-dimer protein fragment is formed when fibrin is cleaved by plasmin and therefore produced naturally whenever clots form in the body. As a result, the D-dimer assay is extremely sensitive for the presence of a pulmonary embolism but is very nonspecific. In other words, if the D-dimer assay is normal, the clinician has a reasonably high degree of certainty that no pulmonary embolism is present. However, many studies have shown a D-dimer assay is only normal in less than ⅓ of patients and thus produces a high degree of false positives. As a result, the D-dimer assay does not obviate formal pulmonary vascular imaging in most patients with symptoms of a pulmonary embolism.
In an attempt to increase the accuracy of diagnostic, physicians have recently turned to methods which can produce an image of a potentially afflicted lung. One such method is a nuclear perfusion study which involves the injection of a small amount of radioactive particles into a vein. The radioactive particles then travel to the lungs where they highlight the perfusion of blood in the lung based upon whether they can penetrate a given area of the lung. While normal results can indicate that a patient lacks a pulmonary embolism, an abnormal scan does not necessarily mean that a pulmonary embolism is present. Nuclear perfusion is often performed in conjunction with a lung ventilation scan to optimize results.
During a lung ventilation scan, the patient inhales a gaseous radioactive material. The radioactive material becomes distributed throughout the lung's small air sacs, known as alveoli, and can be imaged. By comparing this scan to the blood supply depicted in the perfusion scan, a physician may be able to determine whether the person has a pulmonary embolism based upon areas that show normal ventilation but lack sufficient perfusion. Nevertheless, a perfusion scan does not always provide clear evidence that a pulmonary embolism is the cause of the problem as it often yields indeterminate results in as many as 70% of patients.
Pulmonary angiograms are popular means of diagnosing a pulmonary embolism, but the procedure poses some risks and is more uncomfortable than other tests. During a pulmonary angiogram, a catheter is threaded into the pulmonary artery so that iodine dye can be injected into the bloodstream. The dye flows into the regions of the lung and is imaged using x-ray technology, which would indicate a pulmonary embolism as a blockage of flow in an artery. Pulmonary angiograms are more useful in diagnosing a pulmonary embolism than some of the other traditional methods, but often present health risks and can be expensive. Although frequently recommended by experts, few physicians and patients are willing to undergo such an invasive procedure.
Spiral volumetric computed tomography is another diagnostic tool that has recently been proposed as a less invasive test which can deliver more accurate results. The procedure's reported sensitivity has varied widely, however, and it may only be useful for diagnosing an embolism in central pulmonary arteries as it is relatively insensitive to clots in more remote regions of the lungs.
These pulmonary vascular imaging tests have several disadvantages in common. Nearly all require ionizing radiation and invasiveness of, at a minimum, an intravenous catheter. The imaging tests also typically involve costs of more than $1,000 for the patient, take more than two hours to perform, and require special expertise such as a trained technician to perform the tests and acquire the images and a board-certified radiologist to interpret the images. Notably, none are completely safe for patients who are pregnant. As a result of these shortcomings, the imaging procedures are not available in many outpatient clinic settings and in many portions of third world countries.
3. Objects and Advantages
It is a principal object and advantage of the present invention to provide physicians with an instrument for non-invasively diagnosing pulmonary vascular occlusions.
It is an additional object and advantage of the present invention to provide an instrument that accurately diagnoses pulmonary vascular occlusions.
It is a further object and advantage of the present invention to provide an instrument for measuring and interpreting pulmonary test data.
Other objects and advantages of the present invention will in part be obvious, and in part appear hereinafter.
SUMMARY OF THE INVENTION
In accordance with the foregoing objects and advantages, the present invention provides a device and method for non-invasively diagnosing a pulmonary embolism. The device of the present invention comprises a breathing tube having sensors for measuring the flow of air into and out of a patient's lungs while a data processing unit simultaneously determines the oxygen and carbon dioxide concentrations. The device further includes a display screen for visually graphing the resulting calculations and providing a visual means for determining the likelihood that a pulmonary embolism is present based upon a change in measured gas concentrations.


REFERENCES:
patent: 3280636 (1966-10-01), Tomberg
patent: 3303840 (

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Non-invasive device and method for the diagnosis of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Non-invasive device and method for the diagnosis of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-invasive device and method for the diagnosis of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3163821

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.