Surgery – Miscellaneous – Methods
Reexamination Certificate
1998-08-13
2002-10-08
Lacyk, John P. (Department: 3736)
Surgery
Miscellaneous
Methods
C606S151000, C606S157000, C606S192000
Reexamination Certificate
active
06460543
ABSTRACT:
BACKGROUND AND SUMMARY OF THE INVENTION
The present invention relates to a food intake restriction device for the treatment of morbid obesity. More specifically, the invention relates to a food intake restriction device for surgical application in the abdomen of a patient for forming a stoma opening in the stomach or esophagus of the patient.
Food intake restriction devices in the form of gastric banding devices, in which an elongated restriction member in the form of a band encircles a portion of the stomach, have been used in surgery for morbid obesity to form a small gastric pouch above the band and a reduced stoma opening in the stomach. Although such a band is applied around the stomach to obtain an optimal stoma opening during surgery, some prior gastric banding devices are provided with a control means enabling minor post-operation control of the size of the stoma opening. The control means in such prior art devices as disclosed, for example, in U.S. Pat. No. 4,592,339, European Patent No. 0611561 and International Patent Application WO 94/27504, comprise an inflatable cavity in the band and an injection port in fluid connection with the inflatable cavity for adding fluid to or withdrawing fluid from the lafter. In practice, the band is made of silicone rubber which is a material approved for implantation and the fluid is a liquid such as an isotonic salt solution.
It has been found, however, that the prior bands later might dislocate downwardly on the stomach and there is an increased risk of stoma stenosis due to too limited control of the band. It has also been found that the volume of the gastric pouch above the band increases in size up to ten times after the operation. Therefore the pouch volume during surgery needs to be very small, approximately 7 ml. To enable the patient to feed the stomach with sufficient nutrition immediately after the operation considering such a small gastric pouch, the stoma initially needs to be relatively large and later needs to be substantially reduced, as the pouch volume increases. To be able to achieve acceptable control of the band, the cavity in the band has to be relatively large and be defined by a thin flexible wall, normally made of silicone material. Furthermore, the size of the stoma opening has to be gradually reduced during the first year after surgery as the gastric pouch increases in size. As indicated above, the reduction of the stoma opening by using the prior art gastric banding devices is achieved by adding liquid to the cavity of the band via the injection port to expand the band radially inwardly.
A great disadvantage of repeatedly injecting liquid via the injection port is the increased risk of the patient getting an infection in the area surrounding the injection port. If such an infection occurs the injection port has to be surgically removed from the patient. Moreover, such an infection might be spread along the tube interconnecting the injection port and the band to the stomach causing even more serious complications. Thus, the stomach might be infected where it is in contact with the band, which might result in the band migrating through the wall of the stomach. Also it is uncomfortable for the patient when the necessary, often many, post-operation controls of the stoma opening are carried out by using an injection needle penetrating the skin of the patient into the injection port.
Also the patient may swallow pieces of food that are too large and therefore cannot pass the restricted stoma opening. In this case the patient has to visit a doctor who can remove the food pieces, if the band design so permits, by withdrawing some liquid from the band to enlarge the stoma opening to allow the food pieces to pass the stoma. Then, the doctor has to add liquid to the band in order to regain the restricted stoma opening. Again, these measures require the use of an injection needle penetrating the skin of the patient, which is uncomfortable for the patient.
Another problem with the known adjustable gastric banding devices is that there is a risk of leakage from the band balloon occurring some time after the operation.
The invention provides an adjustable food intake restriction device which does not require the use of an injection needle for accomplishing post-operation adjustments of the stoma opening. Rather, the invention provides an adjustable food intake restriction device which permits post-operation adjustments that are comfortable for the patient, and which reduces the risk of liquid leaking from the device.
In accordance with a broad aspect of the present invention, a food intake restriction device is provided for surgical application in the abdomen of a patient for forming a stoma opening in the stomach or esophagus of the patient, the device comprising: an elongated non-inflatable restriction member formed into at least a substantially closed loop around the stomach or the esophagus, the loop defining a restriction opening, an adjustment device which mechanically adjusts the restriction member in the loop to change the size of the restriction opening, hydraulic operation means for operating the adjustment device, and a reservoir containing a predetermined amount of hydraulic fluid for supplying the hydraulic operation means with hydraulic fluid.
In accordance with a specific aspect of the present invention, a food intake restriction device is provided for forming a stoma opening in the stomach or esophagus of a patient, comprising: an elongated restriction member forming an expandable and contractible cavity formed into an at least substantially closed loop around the stomach or esophagus of the patient and defining a restriction opening, the size of which is reduced upon expansion of the cavity and increased upon contraction of the cavity, a reservoir containing a predetermined amount of hydraulic fluid and connected to the cavity of the restriction member, and a hydraulic operation means for distributing fluid from the reservoir to the cavity to expand the cavity and for distributing fluid from the cavity to the reservoir to contract the cavity.
Thus, there is no need for an injection port for accomplishing necessary post-operation adjustments of the restriction opening to change the size of the stoma opening. (In certain applications, however, an injection port connected to the reservoir may be provided for enabling, normally a single once-and-for-all, calibration of the predetermined amount of fluid in the reservoir.)
In accordance with a general embodiment of the invention, the reservoir defines a chamber for the predetermined amount of fluid and the hydraulic operation means changes the size of the chamber. Preferably, the hydraulic operation means comprises first and second wall portions of the reservoir, which are displaceable relative to each other to change the size of the chamber of the reservoir. The hydraulic operation means may distribute fluid from the reservoir to the cavity of the restriction member in response to a predetermined first displacement of the first wall portion of the reservoir relative to the second wall portion of the reservoir and to distribute fluid from the cavity to the reservoir in response to a predetermined second displacement of the first wall portion relative to the second wall portion.
The first and second wall portions of the reservoir may be displaceable relative to each other by manual manipulation thereof, such as by manually pushing, pulling or rotating any of the wall portions in one direction, or alternatively, may be displaceable relative to each other by a device powered magnetically, hydraulically, or electrically (e.g. by an electric motor). In this embodiment no pump is used, only the volume of the reservoir is varied. This is of great advantage compared to the solution described below when a pump is used to pump fluid between the reservoir and the adjustment device because there is no need for a non-return valve and it is still possible to have fluid going both to and from the reservoir.
In accordance with a particular embodiment of the invention, the
Lacyk John P.
Nixon & Vanderhye P.C.
Obtech Medical AG
LandOfFree
Non-injection port food intake restriction device does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Non-injection port food intake restriction device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Non-injection port food intake restriction device will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2978434